=l MonoCon (empirical) SECOND (empirical) CLOCs (empirical) =A= FocalsConv (empirical) == MVX-Net (empirical)

=== MonoCon (certified) SECOND (certified) CLOCs (certified) === FocalsConv (certified) == MVX-Net (certified)
Ir| <10° Ir] < 15° Ir] < 20° Ir] < 25° Ir| < 30°
10~ 10 ~erewgrroer
- 0.8 0.8
S
= 0.6 0.6
8
3 0.4 04
A 0.2 0.2
. 0. 0.0 0.0
00 02 04 06 08 10 00 02 04 06 08 1.0 00 02 04 06 08 1.0 00 02 04 06 08 10
THconf THconf THconf THeonf THconf
1.0 e
0.8 "--1‘
=) 0.6
=2

0.4
0.2

. . 0.0 i .
00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10

THioy THioy THioy THieu THieu
Figure 3: Certified and empirical robustness on detection rate and IoU against rotation transformation (smoothing o = 0.25)
under different thresholds. Solid lines represent the certified bounds, and dashed lines show the empirical performance under
PGD attacks. x-axis represents the threshold for confidence score (THcqns) and IoU score (THyoy), and y-axis represents the
ratio of detection whose confidence / IoU score is larger than the confidence / IoU threshold.

The appendices are organized as follows:

* In Appendix A, we formally present the finite partition assumption (from Section 3.1) and provide an empirical verification
of the assumption.

* In Appendix B, we present the detailed proofs for lemmas and theorems in Sections 3.3 and 3.4 of the main paper.

* In Appendix C, we present some additional details of our two certification strategies: Appendix C.1 for certifying the
detection rate, and Appendix C.2 for certifying the IoU between the detection and the ground truth. We include the detailed
algorithm description and the complete pseudocode for each algorithm. We will make our implementation public upon
acceptance.

* In Appendix D, we show dataset details (Appendix D.1), detailed experimental evaluation (Appendix D.2), some ablation
studies on sample strategies (Appendix D.3) and smoothing parameter o (Appendix D.4), and failure case analysis (Ap-
pendix D.5).

* In Appendix E, we do some side discussions, which includes potential limitations of our method (Appendix E.1) and the
connection between our method and other trustworthy research directions (Appendix E.2).

A Details of Fine Partition Assumption
As introduced in Section 3.1, we impose the following assumption for the transformation.

Assumption 5. For given transformation 7' = {T,, T}, } with parameter space Z C R, there exists a small threshold 7 > 0,
for any polytope of the parameter space Zz,, C Z whose ¢, diameter is smaller than 7, i.e., diamu,(Zs,p) < 7, when
parameters are picked from the subspace, the pairwise /- distance between transformed outputs is upper bounded by maximum
pairwise {5 distance with extreme points picked as parameters. Formally, let E(Z,1,) be the set of extreme points of Z,},, then
V21,29 € Zaup,x € X, pEP,
HTZ(II:,Zl) _TI($7'Z2)||2 < max HTQ;(ZI:,ZD _Tz(w7zé)“27
21,25 €E(Zgup) an
ITp (P, 21) = Tp(p, z2)ll2 < | max [ Tp(p, 21) — Tp(p, 22)]J2.
zl,zQGE(Zsub)
Remark 3. Intuitively, the assumption states that, within a tiny subspace of the parameter space, the displacement incurred
by the transformation, when measured by Euclidean distance, is proportional to the magnitude between parameters, so the
maximum displacement can be upper bounded by the displacement incurred by choosing extreme points as the transformation
parameters. Taking the rotation as an example, within a sufficiently small range of rotation angle [r — A, r + A] where 2A < T,
the assumption means that, the difference between rotated images |7, (x, d1) — T (, 62)||2 and point clouds ||T,(p,d1) —
T,(p, 02)||2 is no larger than || T, (x,r — A) — T (x, 7 + A)||2 and | T, (p,r — A) — T, (p, r + A)||2 respectively.



While it is hard to prove the Assumption 5, we empirically evaluate the Assumption 5 by plotting the distribution of image ¢
norm with different interval sizes (0.001°,0.01°,0.02°,0.03°,0.04°,0.05° for rotation and 0.001, 0.01, 0.02,0.03,0.04, 0.05
for shifting) in randomly selected big intervals (0.06° for rotation and 0.07 for shifting) in Figure 4.

From Figure 4a and Figure 4b, we can notice that with larger rotation and shifting intervals, the image {5 norm becomes
larger and larger, and the /5 distance between the endpoints of each big interval can bound the /5 distance between randomly
chosen points in that big interval, which means that the pairwise ¢, distance picks the maximum value with extreme points
when the transformation intervals are sufficiently small, and thus Assumption 5 is empirically confirmed.
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(a) Image /2> norm distribution in rotation transformation.
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(b) Image ¢2 norm distribution in shifting transformation.

Figure 4: Image /5 norm distribution in rotation and shift transformation. Images are from spawn point 15, 30, 43, 46, 57 and 86
from dataset with building and without pedestrian. The scatter plots show the /5 distance of randomly chosen pairs in randomly
chosen big intervals. The black line is the /5 distance between the endpoints of big intervals.

B Proofs
B.1 Proof of Theorem 1: Detection Certification

In this section, we present the full proof of Theorem 1, which provides generic certification for multi-sensor fusion detection
against an abstract transformation. We first restate this theorem from the main text.

Theorem 1 (restated). Let T = {T,,,T,} be a transformation with parameter space Z. Suppose S C Z and {ca;}}, C S.
For detection confidence g : X x P — [0,1], let hy(x, p) be the median smoothing of g as defined in Eq. (1). Then for all
transformations z € S, the confidence score of the median smoothed detector satisfies:

ha(Tel,2), Ty(p,2) 2 min (T2, 00), T, (9, ) (12
where
M2 M2
- ? _ z _pP 13
g ( (9) 2t p ) (13)
M, —meaglgnn ITx (2, ) — T (2, 04) |2, (14)
M = max min [|T,(p, o) = Tp(p; i) (15)

Proof. We first recall the median smoothed classifier hq(x, p) = sup{y € R |
Prlg(x + 6., p + 6p) < y] < q}, where 6, ~ N(0,0214) and 6, ~ N(0, 02135 ).
Considerafunction [ RIXR3*N — [0,1] with f(z, p) = Prlg(z+06,,p+0p) < hy(x,p)]. We define g : X x P — [0,1]
as g(z, p) = g(x, ;*p). Then -
f(z,p) = Pr[g(x + 6;,p" +6,) < hy(, p)],

where p’ = ?p, &, ~N(0,0 I35 ). (10
p

We now introduce a lemma from (Salman et al. 2019)(Lemma 2) and (Chiang et al. 2020)(Corollary 1).

Lemma 6. Forany g : R% — [, u], let f(z) = Elg(z + G)] where G ~ N'(0,02X). Then the map n(z) = o - =1 (L&) js
1-Lipschitz.



Note that f(z,p’) = E (]l[g(w + 0z, p" +6,) < hg(w,p)]), which means o, - ®~1(f(x,p’)) is 1-Lipschitz.
Now let us consider an arbitrary transformation z € S, by the definition of M, and M,, we have

Vz €S, Jay, |Te(x, 2) — To(x, ;) ||2 < My,

a7
1Tp(p, 2) = Tp(p, i) ll2 < M.
Then
02 @ (Pr [g(Ta(, 2) + 8, Ty (p, 2) + 8,) < hy(w.p)] )
— Ox
— o0 (4.0, 0 p.2))
Op
>0, 07! ;
> 0,07 (1(T@00, Z(p.00) )
o2
M2+ 5 M2
o
P (18)
Z U;C(I)il(Pr [g(Tx(ma ai) + 5wan(pa ai) + 6;0) S hg(m7p):|)
— M2+ a:Mz
o
-1 2, T2 4o
= U;C(I)il(Q)'
Since that ®(-) is monotonic, we conclude that
Vz € S, Jay,s.t. hy(Tu(z, 2), Tp(p, 2)) > hye(x, P). (19)

B.2 Proof of Lemma 2: Upper Bound for the Interpolation Error

Lemma 2 (restated). If the parameter space to certify S = [l1,u1] X + -+ X [lyn, U] is @ hypercube satisfying Assumption 5 with
threshold 7, and {o; }ML, = {F9=50ly + fuy thy = 0,1, K} x oo x {(Babn ] g c k= 0,1, Ko},
where K; > “Lf_ll, then

< _ )
M, < 2 réleag (e, w(k)) — Tp(x,w(k) + w;) R (20)
My < 3 e[ w0(k) = Ty wll) + i) @1
where A = {(ki1,...,kyn) € Z™ |0 < k; < K;} and w(k) = (5= k1l1+ U, ,K’"Kizfmlerﬁ—";um). w; = “};llel,
where e; is a unit vector at coordinate 1. '
Proof. Let z € S C R™ be a parameter in the parameter space to certify and z = (21, . .., z;,). There must be (ky, ko, . . ., ki)
with k; € {0,1,..., K; — 1}, such that
Kook koo Kokl R+l
K, ' K, ‘T~ K; ’ K, Y (22)
Vi=1,2,...,m
Let k = (ki1, ko, ..., k). Consider the small polytope Zs, = k + [0,1]™ - (w1, ..., wy,). By Assumption 5,
T2 (@, 2) — Tu(x, w(k))|2 (23)
< max ||Te(x, ) — Tu(x, B)||2 (24)

avBeE(Zsub)
:HTI($7Z1) _Tw(waz2)||2 (25)



where z1 = k+ I - (wy,...,wy) and 2o = k + I - (wyq,...,wy,) for some I, 5 € {0,1}™. Let {1, g, ...,a,} be a
shortest path from 2; to 2, such that o; € {0,1}™ - (w1, ..., wy,) + k, a1 = k1, and o, = ko. Moreover, «; and ;11 differ
on exactly 1 non-repeating coordinate c;. Then

1T (2, 21) = To(, 22) |2 (26)
n—1
=Y Tu(®, o) = Tu(@, @j11) 2 27)
j=1
n—1
<D I Te(@, 05) = Ta(@, aj4)]2 (28)
j=1
n—1
< — )
‘;%gagnmm,w(k)) o, w(k) +we, )2, (29)
m
< : -7, NN
<2 palTa(e (k) - oo w(k) + w)l (30)
which implies Eq. (20). Eq. (21) also holds, following exactly the same argument for point clouds. O

B.3 Proof of Theorem 4: General IoU Certification for 3D Bounding Boxes

We first recall Theorem 4 from the main paper. Note that we omit details for the convex hulls S, S in the main paper version
for simplicity. Here we provide a complete version with a formal description for S, S.

Theorem 4 (restated). Let B be a set of bounding boxes whose coordinates are bounded. We denote the lower bound of each

bounding box. Then for any B; € B,

hi - (lw — Vol(S\Sqt))

10U(Bi, Byt) > o ° | 31
oUB: Bor) 2 1 - ha - (I — VoI(5\S,:)) ©h)
where Sgy = (x, z,w, [, 7) g is the projection of By, to the x — z plane.
h+h
hi = max ( min min{h, A, ata_ ly" —y|},0),
y' €ly,y] 2
— h+h
ho = max ( min min{h, h, hEh ly' — y|},0). (32)
y'E€ly,7] 2

S, S are convex hulls formed by (z, z, 1, T, 2, 7) with respect to (w, 1) and (0, ). Here we formally define C(z, z, 7, T, 2,7, w, 1).
Let ¢ = arctan(--), we first define

1
w

ALpax e = erél@);] \/WCOS(Q + ko), (33)
ALpin k= 632’(1?] \/mcosw + k), 34)
Ama e = max Vw? + 2sin(0 + k), (35)
AZpin r = min \/msin(ﬂ + k). (36)

o€(r,7)



where k € {—1,1}. The range for each of the four coordinates can be expressed as

A min — A max
Pra = {g+ Afmma o Afuwc) @7
AZmin _ AZrnaux
o (x4 Dt o, Atmacs) @)
A min,— _ A max,—
P = {z+ x2’ LT+ x; -} (39)
Azmin — _ AZrnax -
@ let =g ot (40
Amm x,—1 _ Aijin -
Py ={z— =050~ 2’1} (41)
Azmax — _ Ame —
® {é _ : , 17 1 }’ (42)
A max A min
Py 1={z~ Tma 2 F — ° =} (43)
2 2
AZmax 1 _ AZmin 1
_ 15— 1 44
®{z CE 5 } (44)
The convex hull C(z, z,7,%, z,T,w,l) is
C(z,z,1,%, 2,7, w,l)=Conv(Pi1 UP,,_1UP_11 UP_1 _1). (43)

T
The convex hull S = C(x, z,7,%, 2,7, w, 1), and S = C(z, 2,7, T, Z, 7, W, ).

(ja ga Za IlDa }_L7 l_7 F) Let Bgt = (l’, Y, z, W, ha 77777
l,r) be the ground truth.
VOI(B n Bqt)

Vol(B; U Byy)

Given a fixed center (z,y, z); and a rotation angle r; for B;, the volumes Vol(B; N Bgt) and Vol(B; U Bg) are both monotonic
in terms of the size of B;, (w, h,1);. Hence

IoU(B;, By:) = (46)

10U(Bi, By) > ming , - » Vol(B;(z,y, z,w, h,1,r) N Bg) A7)
maxy,, . Vol(B;(x,y, z,w, h,l,7) U By;)
Note that

Vol(B; (x4, yi, 2i, 0, hy 1,7) U Bg:) (48)

=Vol(B;(x;, Yi, 2i, 0, h, [, 7)) + Vol(Bgy)

— Vol(Bi(z4, Yi, zi, W, b, l,7;) N Bgy)
=whl + whl — Vol(B;(zi, Yi, zi, W, h,1,1;) N Byy). (49)
Therefore,
gﬂrr;;zxr Vol(Bi(x, Y, 2,0, h,[,7) U Bgt)

=whl + whl — min Vol(B;(z,y, z,w, h,1,7) N By). (50)

x,Y,z,T

Combine Egs. (47) and (50), we are left with the work of estimating min, ,, ., Vol
(Bi(w,y, z,wi, hi, li,r) N By;) for some fixed (w;,hi,l;) = (w, h,1) or (w,h,l). Notice that 3D bounding boxes can be
arbitrarily rotated along the y-axis, we consider the intersection on the y-axis and on the x-z plane separately.

Intersection on the y-axis. Projecting B; and By, to the y-axis, we want to lower bound the intersection between an interval
I, with length h; centered at y; € [y, §] and the ground truth interval I = [y — %, Y+ %]

Suppose h; < h. If |y; bt (yi) N I| = hy; otherwise |I1(y;) N I| = max{®t — |y; — y|,0}. In this
case we conclude that |I;(y;) N Io| = max{min{h;, 25" — |3/ — y|},0}. By the exact same argument, when h; > h,

I (y;) N I2| = max{min{h, 2 — |y; — y|}, 0}. Thus,

h+h;
|I1(y;) N Is] > max{ min min{h, h;, +
yi €[y, 7] 2

— lyi —yl}, 0} (51)



In particular, when h; = h and h; = h, the intersection between B; and By on y-axis is larger than h; and hy, respectively,
where

h
h1 = max ( min min{h, h, hth ly" — y|}70),

y' €[y, 2
— h+h
ho = max ( min_min{h, h, hth ly' — y|},0). (52)
y' €ly, 7] 2

Note that both h; and hy can be precisely numerically computed, where the pseudocode is in Algorithm 3.
Intersection on the x-z plane. Next, we consider the projection of B; and B on the x-z plane, denoted by .S; and Sy,
respectively. We have

grgnzlr} Vol(S;(x, z,w;, l;,7) N Sgt) (53)
VO(S; 2, w3, 5,7) — min Vol(Si(z, 2, 1 1)\ (54)
=w;l; — inzlr}" Vol(S;(z, z, w;,’li, m)\Sqt) (55)
>w;l; — \}oi(C(g, 2,7, T, 2, T, Wi, 1;)\Sgt) (56)

where C(z, z,1,Z, Z,7,w;, ;) is an envelop that contains all possible x-z bounding boxes S; with (z,z,1) < (z,2,1) <
(Z, z,7) and a fixed size (w;, ;).

X + Axmin,l/z X+ Axmax,l/z

o _

VZ + DZmax1/2
]

5_1'1< “: __(_p _________ > S1-1

S_1-1

Figure 5: Mlustration of C'(z, z,7, T, Z, 7, w, ) on  — z plane.

As shown in Fig. 5, we calculate the possible range for each of the four vertices of bounding box S;. For example, Fig. 5

illustrates that the  — z coordinate of the upper-right vertex is s; 1 = (x; + 7””;“2 cos(f + v),z; + 7””;“2 sin(f + ¢)).
Therefore, its x, z coordinate of s; ;satisfies

1
z + min 5\/ w? +12cos(f + ) <x11

o€(r,7]

< Z+ max 1\/ w2 + 12 cos(f + ) (57)

9€lr,7 2

1
z+ min —vw? 4+ 2sin(0 + ¢) < 213

oc[r,7] 2

1
<z+ em[ax] 3V w2+ 12sin(0 + ). (58)
elr,7
which means s; 1 = (21,1, 21,1) is contained by the rectangle formed by the four points in Sq 1, i.e., 51,1 € Conv(P; 1). Similar
arguments also hold for rest of vertices: s1,_; € Conv(P;,_1), s_1,1 € Conv(P_; 1), and s_1 1 € Conv(P_y,_1). Finally,
we conclude that
Si = COHV(S1,1, 81,-1,5-1,1, 5—1,—1)

59
C Conv(Py1,P1—1,P_11,P-1,-1) (>9)



Note that S = C(z, 2,7, 7, 2,7, w, 1), and S = C(z, 2,1, T, 2,7, W, ). By Egs. (56) and (59),

min Vol(S;(z, z,w,[,7) N Sgt) > wl — Vol(S\Sy¢) (60)
and ~ ~ -

min Vol(S;(x, z,w,{,7) N Sg) > wl — Vol(S\Sgt). (61)

Combining the above, we have

U (B, By) > = VB ) (62)

= hwl + haol — hy(wl — Vol(S\Sg))

C Additional Details of Certification Strategies

In this section, we present the details of our detection (Appendix C.1) and IoU (Appendix C.2) certification algorithms for
camera and LiDAR fusion models, including the pseudocode and some details of our implementation. Note that our algo-
rithms can be adapted to any fusion framework and single-modality model by doing smoothing inference and certification for
corresponding modules.

C.1 Detection Certification

Algorithm 1 presents the pseudocode of our detection certification (function CERTIFY) and median smoothing detection
(function INFERENCE). In our implementation, we directly sample on the left endpoints of each interval and do smoothing
inference, which can also be replaced by a random point in each small interval.

C.2 IoU Certification

Algorithm 2 presents the pseudocode of our IoU certification (function CERTIFY) and smoothing bounding box detection
(function INFERENCE). As in the detection certification framework, we also do sampling on the lower endpoint of each small
interval. Algorithm 3 presents the pseudocode of IoU lower bound computation given the bounding box parameter intervals
and the ground truth bounding box, and Algorithm 4 presents the pseudocode for computing the x, z coordinate intervals for
bounding box endpoints. Note that our framework focuses on the 7-parameter representation of bounding boxes (z, y, 2, height,
width, length, rotation angle), which can be adapted to other representation formats easily (e.g. 8 parameter representation,
endpoint representation).



Algorithm 1: 0/1 Detection and Certification

18
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20
21

22
23
24

25
26
27
28
29
30
31
32
33

34
35
36
37

38

39
40
41

42

43
4
45
46

47

Input: clean image input &g € X C R<, clean point cloud input pg € P C

ful

R3X N multi-sensor fusion pipeline F' : X X P — ([C] x [0, 1]) . ground truth label y, image Gaussian

noise variance Ug , point Gaussian noise variance 0'12), transformation space [z, 2z, ], transformation function 7", detection threshold o

Output: smoothed confidence score of ground truth label ¢,y ¢ 4 g » lower bound and upper bound of confidence score of ground truth ¢4, , ¢, whether the object is robustly detected as a boolean
variable b

function InFERENCE (F, 0, P0s Yks Tz, Op, Ty Y0) ¢

L

q; < BINARYSEARCHLEFT(BinomialCDF(n,p),1 — a)

& < ADDGAUSSIANNOISE (@g, 0z,

P < ADDGAUSSIANNOISE (Pg, Op,n)

& — CoMPUTECONFIDENCESCORES (F, &, P, Y )
& < Sorrt (&)

Cmedian = €|0.5n]

b < Ilepmedian = 0]

return ¢, edian > 0

nction CERTIFY (F, @0, PO, Yks Tas Op, 1, [2], Zul, ¢, &, 70)
interval list < SPLITINTERVAL ([2], Z4])
Cmedian-list, cylist, cplist < [1, [1.[]

for (25, 2sw] € interval_list do

€ <+ ComputeERs (T, ®o, POs Oz, Op, Zsls Zsu) > compute € according to equation (13)

qu,q) < GETEMPIRICALPERC (n, €, ¢, a/|interval list|) > compute q.,q: according to equation (10)

& «— ApDGAUsSsIANNOISE (Ty (®0, 257), O, 1)

> sample m Gaussian noises 4y NN(O,O’iId) and add to Ty (®o,2s1) to get m noisy samples &

P < ApDGAUSSIANNOISE (Tp(Po, Z51), Op,s 1)
> sample n Gaussian noises §, ~ N(0, O’f)ngN) and add to (Tp(po,zsi) to get nm noisy samples p

& — CoMPUTECONFIDENCESCORES (F, &, P, y)

> collect the confidence score of y for each (x,p) € (&,p) based on F(x,p) = maxi<k<eiyy,=y Ck

& < SorT (&)
Cmedian < €|0.5n]

if gg = —1 then
‘ cp + —oo > —oo means cannot certify
else
cp — éql

if g, = oo then

‘ Cy ¢ 00 > 00 means cannot certify
else

L cu ¢ éqq

Cmedian-list add ¢, eqian, Cu-list add ¢y, ¢;-list add c;

b < I[min ¢;-list > ~g]
return min c;_list, max cq -list, b

nction GETEMP IRICALPERC (7, €, ¢, @)t
p+— @ (<I>71(p) — c)

> do binary search and choose the left endpoint

if BinomialCDF(q;, p) > 1 — o then

q < —1

p+— @ (<I>71(p)+e)

Qu 4 BINARYSEARCHRIGHT(BinomialCDF(n,p), «)

> do binary search and choose the right endpoint

if Binomial CDF(q,,, P) < o then

Gy < OO

return q.,, q;




Algorithm 2: Bounding Box Detection and Certification

Input: clean image input zg € X C R%, clean point cloud input pg € P C R3X N multi-sensor fusion pipeline
F: X xP— ([X] x[Y] x[Z] x W] x [H] x[L] x [R] x [C] x [0, 1])y,, image Gaussian noise §; ~ N(0, af_,Id),poianaussian noise 6, ~ N (0, 012313><N),
transformation space [z, z4,].

Output: smoothed prediction bbox ,,, ¢ 4 an » lower bound of IoU between predicted bounding boxes and ground truth bounding boxes JoU

1 function INFERENCE (F, &0, PO, Oz, Op, N):
2 & < ADDGAUSSIANNOISE (@g, Og, )
3 P < ADDGAUSSIANNOISE (Pg, Op,n)
4 bbox < CompuTEBBoXPARAMS (F(Z,p))
5 bbox < Sort (bbox) > sort on each parameter
6
7 bboTmedian — bbox 10.5n] > take the median of each parameter
8
9 || returnbbox,edian
10 function CERTIFY (F, @0, P0, Ta, Op, N, [Zs15 Zsul, €, @) 2
11 interval list < SPLITINTERVAL ([Z47, Zsu])
12 ToU_list + []
13 for (24, z5u] € interval_list do
14 € + ComputeErs (T, ®g, PO, Oz, Tp, 2], Zu) > compute € according to equation (13)
15
16 Qu, q) < GETEMPIRICALPERC (n, €, ¢, /|interval_list|) > compute ¢q.,q according to equation (10)
17
18 & < AppGavussianNoIse (Ty (=0, 257), Ox,n)
> sample n Gaussian noises &z ~ N(0, oild) and add to Ty(wo,zs;) to get m noisy samples &
19
20 P < RppGauss1aNNo1sE (T (Po, Z51), Op, M)
> sample n Gaussian noises §, ~ N(0, 012,13><N) and add to (Tp(po,zsi) to get nm noisy samples p
21
22 bbox < CompuTEBBOXPARAMS (F(Z,P))
23 bbox <+ Sort (bbox) > sort on each parameter
24
25 if g = —1 then
26 IoU + —oo > —o0 means cannot certify
27
28 return oU
29 else
30 L bboz; + bbozg,
31 if g, = oo then
32 IoU < oo > 00 means cannot certify
33
34 return JoU
35 else
36 | bbowy « bbozg,
37 IoU <+ IoULowerBounD (bbox, bbox, bbox)
38 IoU.list add IoU
39 return min(IoU list)
40 function GETEMPIRICALPERC (1, €, C, @)t
a1 g<—q>(q>*1(p)—e)
42 qp < BINARYSEARCHLEFT(BinomialCDF(n,p),1 — a) > do binary search and choose the left endpoint
43
44 if BinomialCDF(q;, p) > 1 — o then
45 | @+ -1
46 5<—<1>(q>*1(p)+e)
47 qu 4 BINARYSEARCHRIGHT(BinomialCDF(n,p), o) > do binary search and choose the right endpoint
48
49 if BinomialCDF(q4,, P) < « then
50 t Qy — 00

51 return g, , q;




Algorithm 3: ToU Lower Bound

Input: upper bound of bounding boxes’ parameters bbox, lower bound of bounding boxes’ 20 function UnionUpperBound (bbox, bbox, bbox):
parameters bbox, ground truth bounding boxes’ parameters bbox 21 ify < (¥ + y)/2 then
Output: lower bound of ToU between predicted bounding boxes and ground truth bounding boxes 22 ‘ Yu =Y
IoU 23 else
1 function ToULowerBound (bbox, bboz, bbox) : 24 L vu=7%
2 Vi < IntersectionLowerBound (bbox, bbox, bbox) . —
e ) 25 ify <wyy — hory, <y — hthen
3 Vi « UnionUpperBound (bboz, bbox, bbox) 26 | “return0
4 return ﬁ/ViU 27 else
5 function IntersectionLowerBound (bbox, bbox, bbox): 28 L hy = min(yv,y) — max(yu77 h,y — h)
6 ify < (¥ + y)/2 then 29 Tz, LZy 4 CornerXzZintervals(l,w,z, 2,7,T,2,T)
7 ‘ Y=y 30 Sovertap ¥ OverlapArealower (zz], T2y, bbox)
3 e‘S[' 31 if Spperiap < O then
Y=Yy — -
= 32 returnh -w -l 4+ h-w-1
10 ify <y, —hory; <y — hthen 33 else
11 11 h-w-1
1 e]‘se return 0 34 L returnh - w - l+h -W-1—hy - Soperiap
13 | hr=min(y,y) — max(y, — b,y — h)
14 TZ], Tz, 4 CornerXzIntervals(,w,z,2,r,%,%2,T)
15 Soverlap  OverlapArealower (22, Tzy, bbox)
16 if Sopertap < Othen
17 | return0
18 else
19 L return by - Soyeriap

D Additional Experimental Details
D.1 Dataset

As introduced in Section 4, we generate the certification data via spawning the ego vehicle at a few randomly chosen spawn
points.

We use CARLA simulator to generate the benchmark, which is widely used in the literature to study the robustness of
autonomous driving models (e.g.,(Xu et al. 2022)). It is studied that model performance in CARLA-generated scenarios aligns
with that in the real world (Osinski et al. 2020). Hence, we believe the fidelity of CARLA-generated data is suitable for studying
and improving the robustness of MSF systems.

For settings with 15 spawn points in Table 2, the randomly-chosen spawn point index in the CARLA TownO1 map is 15, 30,
43, 46, 57, 86, 102, 11, 136, 14, 29, 6, 61, 81, and 88. For settings with 4 spawn points in Table 2, the randomly-chosen spawn
point index is 15, 30, 43, and 46.

Certification setup. As reflected in Lemma 2, to certify the robustness, we need to partition the transformation’s parameter
space. For rotation certification, we split the rotation angle interval [—30°, 30°] uniformly into 600 tiny intervals of 0.1 degree;
for shifting certification, we split the distance interval [10, 15] uniformly into 500 tiny intervals of 0.01 meter.

Empirical attack setup. In Section 4, we evaluate the empirical robustness, i.e., the robustness under attacks, to show vanilla
models’ vulnerability and estimate the certification tightness. For rotation, we conduct the attack by enumerating the lowest
detection rate and IoU score among 6000 parameters uniformly sampled with a distance 0.01 degree (distance = 60° /6000 =
0.01°); for shifting, we conduct the attack by enumerating the lowest detection rate and IoU score among 5000 parameters
uniformly sampled with a distance of 0.001 meter (distance = 5/5000 = 0.001).

D.2 Detailed Experimental Evaluation

In this section, we present the complete experimental results, which include rotation transformation (Table 3) and shifting
transformation (Table 4) considering different thresholds for detection and IoU certification.

Certification against rotation transformation. As shown in Table 3 and discussed in Section 4.1, the order of robustness
against rotation transformation in the detection metric is FocalsConv > MVX-Net > MonoCon > CLOCs > SECOND,
but the most robust model in the IoU metric is CLOCs. Moreover, with experimental results in different thresholds (Table 3b,
Figure 6a and Figure 3), the performance of models all drop when the threshold or attack radius increase, and all models’
certified IoU drop to 0 when THjoy ~ 0.6 , which reflects the problem of models’ robustness against rotation transformation.
We can also find that the performance difference between models increases when the threshold or attack radius increases.

Certification against shifting transformation. As shown in Table 4 and discussed in Section 4.2, the order of robustness
against shifting transformation in the detection metric is MVX-Net > CLOCs > SECOND =~ MonoCon > FocalsConv, and
the order in the IoU metric is CLOCs > MonoCon < MVX-Net > SECOND > FocalsConv. This shows the advantage
of fusion models (e.g. CLOCs) on the one hand but also shows this makes the attack space larger on another hand (e.g.
FocalsConv), which leads to a new question of robust fusion mechanism design.



Algorithm 4: Corners’ x, z Intervals
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Input: bounding box length I, width w, = lower bound z, z lower bound z, rotation angel lower bound r, = upper bound , z upper bound z, rotation upper bound 7

Output: bounding box corners’ xz coordinates lower bound x z;, bounding box corners’ xz coordinates upper bound x z,,

function CornerXZIntervals (l,w,x,2,17,%,2,T):

xzCoorsList < ||
for z, z in [[z, 2] , [Z, Z]] do
for r in r, 7 do
zzCoors < ComputeXZ (x, z,T)
L zzCoorsList add zzCoors

Tz, Tz,  ComputeXZInterval (zzCoorsList)

> consider extremum cases

a < arctan(w/1)

d <+ 1/(1/2)% + (w/2)?
ifm— a>randw — o <7 then
zz[0] <z —d

zzy[4] — T+ d

if 2r — a > rand 27w — o < T then
22,[0] < T+ d
zzi[4) «z—d

ift/2 —a >randn/2 — a <7 then
zzy[l] «— Z+d
zz[5) «—z—d

if37/2 — a > rand3n/2 — a < 7 then
zzi[1) 2z —d
22y (5] < Z+d

if « > r and o < 7 then
rzy[2] +— T+ d
zz[6) «— z —d

ifT+a >randn + o <7 then

zz1[2) —z —d

22, [6] T+ d

ifr/2+ a>randn/2+ o <7 then
2z (3] —Z+d

zz[7) —2z—d

if37/2 4+ a > rand 37/2 + o < T then
zz[3) «—z—d

T2y [T] <+ Z+ d

35 return xz;, Tz,

> compute x,z intervals roughly
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Table 2: Certification data. Each row stands for one setting, and the columns “vehicle color”, “building”, “pedestrian”, and
“amount” represent the color of the car, whether buildings exist, whether a pedestrian exists, and the number of corresponding
data respectively.

vehicle color | building | pedestrian | amount

blue yes no 15
red yes no 4
red yes yes 4

black yes no 4
black yes yes 4

blue no no 15
red no no 4
red no yes 4

black no no 4
black no yes 4

D.3 Effect of Sample Strategy

To study the effect of sampling strategies, we compare two different sampling strategies and show the results in Table 5. The
first strategy is fixing the size of intervals (e.g. 0.1° rotation intervals in out case), which is named “Certification (sparse)” in
Table 5, and the second strategy is fixing small interval number (e.g. 600 small intervals in each big rotation interval), which is
called “Certification (dense)” in Table 5.

From certified detection rate Table 5a and certified IoU Table 5b, we can find that the “Certification (sparse)” is already tight
enough when the sample number in each small interval stays the same since the certified detection rate and IoU in “Certification
(sparse)” is almost the same as those in “Certification (dense)”.

D.4 Effect of Smoothing Parameter o

To study the effect of smoothing parameter o, we test our approach with random Gaussian noise whose o = 0.5 in our rotation
setting to compare the previous results on rotation transformation with noises whose o = 0.25 (Table 3).

As shown in Figure 6c, Figure 8 and Table 6, the models’ performance might degrade in small attack radius with larger
smoothing o, but smoothing with larger o can also improve the robustness of models against large attack radius, especially for
the model which is more stable than others (CLOCS in our case).

D.S Examples

In this subsection, we present some failure cases and possible reasons.

As shown in Figure 9a, where MonoCon fails to detect the front vehicle when the rotation angle r is somewhere larger than
20° but is able to detect it when r < 20°, where CLOCs can detect cars with all rotation angles between —30° and 30°. The
possible reason for this situation is that there are some objects (e.g. the puddle on the sidewalk and trees far away in this case)
with similar color to the vehicle, which impacts the detection ability of camera-based detection modules. This problem can be
mitigated by the LiDAR-based detection modules.

Figure 9c shows another failure case of camera-based models. Although there is no object with a similar color to the vehicle
that we want to detect. The car farther is relatively small in the image, which is harder for camera-based models to detect. The
application of point cloud data is very helpful in this case because of the perception ability of objects at long distances.

Figure 9b and Figure 9d shows two failure cases of SECOND, which is representative of LiDAR-based models where fusion
models can detect relatively well. The possible reason for this case is that there are some objects very close to the vehicle
(e.g.benches and grass in these cases), which affects the detection ability of point cloud modules, which can be mitigated by
the combination with camera-based modules.

E Side Discussions
E.1 Potential Limitations

* The first potential limitation of our framework is inference overhead incured by inference-time smoothing. Such smoothing
usually requires sampling around 100 samples to make the prediction. This limitation is also shared by other randomized
smoothing approaches and its mitigation is another important research topic (Horvath et al. 2022).

* The second potential limitation is achieving robustness comes at the expense of normal accuracy degradation. Such a
robustness-accuracy tradeoff is a lasting topic and can be partly mitigated by principled training (Zhang et al. 2019) or
gated selection (Mueller, Balunovic, and Vechev 2020).



Table 3: Overview of rotation transformation experiment results (smoothing o = 0.25). Each row represents the correspond-
ing model and attack radius. “Benign”, “Adv (Vanilla)”, “Adv (Smoothed)”, and “Certification” stands for benign perfor-
mance, vanilla models’ performance under attacks, smoothed models’ performance under attacks, and certified lower bound of
smoothed model performance under attacks. Each column represents the results under different thresholds.

(a) Detection rate under rotation transformation

Model ‘ Attack Radius Benign ‘ Adv (Vanilla) ‘ Adv (Smoothed) ‘ Certification
* Det@20  Det@50  Det@80 Det@20  Det@50  Det@80 Det@20  Det@50  Det@80 | Det@20  Det@50  Det@80
[r] < 10 70.97% 70.97% 58.06% 9839% 9839% 80.65% 95.16% 95.16% 75.81%
MonoCon |r] < 15° 70.97% 70.97% 58.06% 98.39% 98.39% 80.65% 95.16% 95.16% 75.81%
(Liu, Xue, and Wu 2022) |r] < 20° 100.00%  100.00%  100.00% 70.97% 70.97% 58.06% 98.39% 98.39% 80.65% 95.16% 95.16% 75.81%
|r] < 25° 70.97% 70.97% 45.16% 98.39% 98.39% 80.65% 95.16% 95.16% 75.81%
|r] < 30° 70.97% 70.97% 32.26% 96.77% 96.77% 80.65% 91.94% 91.94% 75.81%
[r] < 10 100.00%  100.00% 0.00% 100.00%  100.00% 0.00% 100.00%  100.00% 0.00%
SECOND |r] < 15° 100.00%  100.00% 0.00% 100.00%  100.00% 0.00% 100.00%  100.00% 0.00%
(Yan, Mao, and Li 2018) |r| < 20° 100.00%  100.00%  100.00% 100.00%  100.00% 0.00% 100.00%  100.00% 0.00% 100.00% 100.00% 0.00%
|r| < 25° 100.00% 12.90% 0.00% 100.00%  100.00% 0.00% 100.00%  100.00% 0.00%
|r] < 30° 67.74% 3.23% 0.00% 100.00% _100.00% 0.00% 100.00% 62.90% 0.00%
[+] < 10 100.00%  100.00%  100.00% 100.00%  100.00% 88.71% 100.00%  100.00% 88.71%
CLOC |r] < 15° 100.00%  100.00%  100.00% 98.39% 79.03% 66.13% 98.39% 71.42% 66.13%
(Pang, Morris, and Radha 2020) |r| < 20° 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 98.39% 69.35% 50.00% 98.39% 67.74% 50.00%
|r] < 25° 100.00% 91.94% 20.97% 98.39% 69.35% 50.00% 98.39% 67.74% 50.00%
|r] < 30° 100.00% 74.19% 3.23% 98.39% 69.35% 50.00% 98.39% 67.74% 50.00%
7] < 10° 100.00%  100.00%  100.00% 100.00%  100.00%  100.00% 100.00%  100.00%  100.00%
FocalsConv |r] < 15° ) ) ) 100.00%  100.00%  100.00% 100.00%  100.00%  100.00% 100.00%  100.00%  100.00%
(Chen et al. 2022) |r| < 20° 100.00% 100.00% 100.00% 100.00%  100.00%  100.00% 100.00%  100.00%  100.00% 100.00% 100.00%  100.00%
|r| < 25° 100.00%  100.00%  100.00% 100.00%  100.00%  100.00% | 100.00%  100.00%  100.00%
|| < 30° 100.00% _100.00% 98.39% 100.00% _ 100.00%  100.00% | 100.00%  100.00% __ 100.00%
[~] < 10 100.00%  100.00%  100.00% 100.00%  100.00%  100.00% | 100.00%  100.00% 51.61%
MVX-Net |r] < 15° 100.00%  100.00%  100.00% 100.00%  100.00%  100.00% | 100.00%  100.00% 51.61%
(Sindagi, Zhou, and Tuzel 2019) |r| < 20° 100.00% 100.00% 100.00% 100.00% 100.00% 90.32% 100.00% 100.00% 90.32% 100.00% 100.00% 51.61%
|r| < 25° 100.00%  100.00% 3.23% 100.00%  100.00% 3.23% 100.00%  100.00% 50.00%
|r] < 30° 100.00% _ 100.00% 3.23% 100.00% _ 100.00% 3.23% 100.00% _ 100.00% 50.00%

(b) IoU with ground truth under rotation transformation

N Benign Adv (Vanilla) Adv (Smoothed) Certification
Model Attack Radius l AP@30 _ AP@50 _ AP@S0 | AP@30  AP@50 _ AP@S0 | AP@30  AP@5)  AP@80 | AP@30 _ AP@S0 __ AP@S0

10° 56.45% 56.45% 0.00% 82.26% 8226% 0.00% 75.81% 0.00% 0.00%
159 54.84% 54.84% 0.00% 82.26% 82.26% 0.00% 74.19% 0.00% 0.00%
20° 100.00% 100.00% 100.00% 54.84% 53.23% 0.00% 82.26% 74.19% 0.00% 6.45% 0.00% 0.00%
25° 51.61% 16.13% 0.00% 80.65% 16.13% 0.00% 0.00% 0.00% 0.00%
30° 46.77% 0.00% 0.00% 79.03% 3.23% 0.00% 0.00% 0.00% 0.00%
10° 96.77% 96.77% 0.00% 100.00%  100.00%  100.00% 100.00%  100.00% 0.00%
159 96.77% 96.77% 0.00% 100.00% 100.00%  100.00% 100.00%  100.00% 0.00%
20° 100.00% 100.00% 100.00% 96.77% 96.77% 0.00% 100.00% 100.00% 54.84% 100.00% 100.00% 0.00%
25° 83.87% 83.87% 0.00% 100.00% 96.77% 0.00% 100.00% 0.00% 0.00%
30° 51.61% 51.61% 0.00% 54.84% 54.84% 0.00% 11.29% 0.00% 0.00%
10° 90.32% 90.32% 90.32% 100.00%  100.00% 98.39% 100.00%  100.00% 0.00%
15° 90.32% 90.32% 90.32% 98.39% 98.39% 85.48% 98.39% 87.10% 0.00%
20° 100.00% 100.00% 100.00% 88.71% 88.71% 77.42% 98.39% 98.39% 67.74% 98.39% 69.35% 0.00%
25° 87.10% 87.10% 0.00% 98.39% 98.39% 67.74% 98.39% 67.74% 0.00%
30° 80.65% 80.65% 0.00% 98.39% 98.39% 67.74% 98.39% 53.23% 0.00%
10° 96.77% 96.77% 0.00% 100.00%  100.00% 0.00% 100.00% 0.00% 0.00%
159 96.77% 0.00% 0.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00%
20° 100.00% 100.00% 100.00% 96.77% 0.00% 0.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00%
25° 96.77% 0.00% 0.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00%
30° 96.77% 0.00% 0.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00%
10° 96.77% 96.77% 0.00% 95.16% 72.58% 0.00% 72.58% 0.00% 0.00%
159 96.77% 96.77% 0.00% 95.16% 72.58% 0.00% 72.58% 0.00% 0.00%
20° 100.00% 100.00% 100.00% 96.77% 96.77% 0.00% 95.16% 72.58% 0.00% 72.58% 0.00% 0.00%
25° 96.77% 75.81% 0.00% 95.16% 72.58% 0.00% 66.13% 0.00% 0.00%
30° 96.77% 75.81% 0.00% 95.16% 72.58% 0.00% 0.00% 0.00% 0.00%

MonoCon
(Liu, Xue, and Wu 2022)

SECOND
(Yan, Mao, and Li 2018)

CLOCs
(Pang, Morris, and Radha 2020)

FocalsConv
(Chen et al. 2022)

MVX-Net
(Sindagi, Zhou, and Tuzel 2019)
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 The third potential limitation is evaluation without real-world AV systems. On the one hand, we remark that such evaluation
will require a much longer evaluation time period, and related works (Hu et al. 2023; Prakash, Chitta, and Geiger 2021)
usually skip it for faster technique evolvement. On the other hand, there is no technical challenge in deploying and evaluating
our approach in real-world AV systems, and it is our ongoing effort to conduct evaluations on real-world AV systems.

E.2 Connection with Other Trustworthy Research Directions

* Conformal Prediction The conformal prediction is another important tool for qualifying and improving the trustworthiness
in autonomous driving. Since our framework certifies instance-level prediction correctness for semantically transformed
input, and conformal prediction guarantees distribu-tional-level error rate for exchangeable data distribution, our framework
cannot directly compare with conformal prediction. However, our framework can be combined with conformal prediction
to improve trustworthiness under these two notions at the same time. We leave as future work to study the interactions and
connections between our framework and conformal prediction.

* Corruption Parameterization Though our method does not support common corruption yet, we believe that this is not a
technical limitation. Indeed, as long as the transformation can be parameterized, we can apply our method to certify. As a
result, to apply our proposed method to common corruptions, we only need to parameterize common corruptions, €.g., by
learning the perturbations sets (Wong and Kolter 2021).



Table 4: Overview of shifting transformation experiment results. Each row represents the corresponding model and attack ra-
dius. “Benign”, “Adv (Vanilla)”, “Adv (Smoothed)”, and “Certification” stands for benign performance, vanilla models’ perfor-
mance under attacks, smoothed models’ performance under attacks, and certified lower bound of smoothed model performance
under attacks. Each column represents the results under different thresholds.

(a) Detection rate under shifting transformation

Model [ Attack Radius [ Benign [ Adv (Vanilla) [ Adv (Smoothed) Certification
§ s Det@20  Det@50  Det@80 Det@20  Det@50  Det@80 | Det@20  Det@50  Det@80 Det@20  Det@50  Det@80
T0< 2z < 11 7.10% 7.10% 66.13% 87.10% 37.10% 66.13% 8387% 8387% 64.52%
10< 2 < 12 85.48% 85.48% 62.90% 85.48% 85.48% 62.90% 75.81% 75.81% 61.29%
L XM°§‘°Sw 2022 10< 2z <13 100.00% 100.00% 100.00% 82.26% 82.26% 56.45% 82.26% 82.26% 56.45% 72.58% 72.58% 51.61%
(Liu, Xue, and Wu ) 100< 2< 14 75.81% 75.81% 46.77% 75.81% 75.81% 46.77% 66.13% 66.13% 41.94%
10< 2< 15 50.00% 50.00% 27.42% 50.00% 50.00% 27.42% 48.39% 48.39% 27.42%
10 < z < 11 100.00% 70.97% 0.00% 100.00% 70.97% 0.00% 100.00% 0.00% 0.00%
SECOND 10< 2 < 12 100.00% 70.97% 0.00% 100.00% 70.97% 0.00% 100.00% 0.00% 0.00%
(Yan, Mao, and Li 2018) 10< 2<13 100.00%  100.00%  100.00% 100.00% 12.90% 0.00% 100.00% 70.97% 0.00% 100.00% 0.00% 0.00%
» Viao, 10< 2 < 14 100.00% 12.90% 0.00% 100.00% 70.97% 0.00% 100.00% 0.00% 0.00%
10< 2< 15 100.00% 12.90% 0.00% 100.00% 70.97% 0.00% 100.00% 0.00% 0.00%
T0< z < 11 T00.00%  100.00% 93.54% T00.00%  100.00% 93.54% T00.00%  100.00% 67.74%
100< 2< 12 100.00%  100.00% 93.54% 100.00%  100.00% 93.54% 100.00%  100.00% 66.13%
Pang, M ?L,OSSR, dha 2020 10< 2<13 100.00%  100.00%  100.00% 100.00%  100.00% 85.45% 100.00%  100.00% 88.71% 100.00%  100.00% 64.52%
(Pang, Morris, and Radha 2020) 10< 2< 14 100.00% 100.00% 64.52% 100.00% 100.00% 85.48% 100.00% 100.00% 62.90%
10< 2< 15 100.00% __100.00% 64.52% 100.00% __100.00% 83.87% 100.00% _ 100.00% 61.29%
T0< 2z < 11 100.00%  100.00% 96.77% 100.00%  100.00% 96.77% 91.94% 88.71% 54.84%
FocalsCony 10< 2 < 12 100.00%  100.00% 96.77% 100.00%  100.00% 96.77% 87.10% 79.03% 4.84%
(Chen et al. 2022) 10< 2<13 100.00%  100.00%  100.00% 82.26% 22.58% 0.00% 82.26% 22.58% 0.00% 4.84% 0.00% 0.00%
: 10< 2 < 14 14.52% 0.00% 0.00% 14.52% 0.00% 0.00% 0.00% 0.00% 0.00%
10< 2< 15 8.06% 0.00% 0.00% 8.06% 0.00% 0.00% 0.00% 0.00% 0.00%
T0< z < 11 T00.00%  100.00% 8871% T00.00%  100.00% _ 100.00% T00.00%  100.00% _ 100.00%
MVX-Net 10< 2 < 12 100.00%  100.00% 88.71% 100.00%  100.00%  100.00% 100.00%  100.00% 98.39%
(Sindagi, Zhou, and Tuzel 2019) 10< 2<13 100.00%  100.00%  100.00% 100.00%  100.00% 88.71% 100.00%  100.00%  100.00% 100.00%  100.00% 98.39%
g ’ 100<2< 14 100.00%  100.00% 88.71% 100.00%  100.00%  100.00% 100.00%  100.00% 96.77%
10< 2< 15 100.00% _ 100.00% 20.97% 100.00% 96.77% 95.16% 100.00% 96.77% 85.48%

(b) IoU with ground truth under shifting transformation

Model Attack Radius ‘ Benign Adv (Vanilla) ‘Adv (Smoothed) Certification
AP@30 AP@50 AP@80 AP@30 AP@50 AP@80 AP@30 AP@50 AP@80 AP@30 AP@50 AP@80
10 <z < 11 TT1.82% T1.82% 41.94% 77.42% 71.42% 41.94% 74.19% 41.94% 0.00%
MonoCon 10 < z< 12 74.19% 74.19% 0.00% 74.19% 74.19% 0.00% 69.35% 1.61% 0.00%
(Liu, Xue, and Wu 2022) 10 < 2z <13 100.00% 100.00% 100.00% 72.58% 72.58% 0.00% 72.58% 72.58% 0.00% 61.29% 0.00% 0.00%
> y 10 < 2 < 14 40.32% 33.87% 0.00% 40.32% 33.87% 0.00% 20.97% 0.00% 0.00%
10 < 2z <15 6.45% 1.61% 0.00% 6.45% 1.61% 0.00% 0.00% 0.00% 0.00%
10 <=z < 11 93.55% 93.55% 93.55% 100.00% 100.00% 0.00% 0.00% 0.00% 0.00%
SECOND 10 < z <12 93.55% 93.55% 93.55% 100.00% 100.00% 0.00% 0.00% 0.00% 0.00%
(Yan Mao. and Li 2018) 10 < z <13 100.00% 100.00% 100.00% 87.10% 87.10% 87.10% 100.00% 100.00% 0.00% 0.00% 0.00% 0.00%
> > 10 < z < 14 87.10% 87.10% 87.10% 100.00% 100.00% 0.00% 0.00% 0.00% 0.00%
10 < z< 15 87.10% 87.10% 87.10% 100.00% 100.00% 0.00% 0.00% 0.00% 0.00%
10 <z < 11 93.55% 93.55% 93.55% 100.00% 100.00% 100.00% 79.03% 79.03% 0.00%
CLOCs 10 < z < 12 80.65% 80.65% 80.65% 80.65% 80.65% 80.65% 51.61% 51.61% 0.00%
(Pang, Morris. and Radha 2020) 10 < z < 13 100.00% 100.00% 100.00% 80.65% 80.65% 77.42% 80.65% 80.65% 77.42% 51.61% 48.39% 0.00%
2. § 10< 2 <14 80.65% 80.65% 77.42% 80.65% 80.65% 77.42% 51.61% 48.39% 0.00%
10 < z <15 80.65% 80.65% 77.42% 80.65% 80.65% 77.42% 51.61% 48.39% 0.00%
10 <z < 11 97.71% 0.00% 0.00% 100.00% 100.00% 0.00% 85.48% 0.00% 0.00%
FocalsConv 10 < z < 12 0.00% 0.00% 0.00% 100.00% 100.00% 0.00% 83.87% 0.00% 0.00%
(Chen et al. 2022) 10 < z <13 100.00% 100.00% 100.00% 0.00% 0.00% 0.00% 82.26% 82.26% 0.00% 4.84% 0.00% 0.00%
. 10 <2< 14 0.00% 0.00% 0.00% 14.52% 14.52% 0.00% 0.00% 0.00% 0.00%
10 < 2 <15 0.00% 0.00% 0.00% 8.06% 8.06% 0.00% 0.00% 0.00% 0.00%
10 <=z < 11 96.77% 96.77% 0.00% 100.00% 100.00% 0.00% 85.48% 0.00% 0.00%
MVX-Net 10 < 2z <12 96.77% 96.77% 0.00% 100.00% 100.00% 0.00% 85.48% 0.00% 0.00%
(Sindagi, Zhou, and Tuzel 2019) 10 < z <13 100.00% 100.00% 100.00% 96.77% 96.77% 0.00% 100.00% 100.00% 0.00% 85.48% 0.00% 0.00%
= > 10 < z < 14 96.77% 96.77% 0.00% 100.00% 100.00% 0.00% 85.48% 0.00% 0.00%
10 < z< 15 96.77% 96.77% 0.00% 100.00% 100.00% 0.00% 85.48% 0.00% 0.00%




=l= MonoCon (empirical) SECOND (empirical) == CLOCs (empirical) =A= FocalsConv (empirical) == MVX-Net (empirical)

=== MonoCon (certified) SECOND (certified) === CLOCs (certified) == FocalsConv (certified) == MVX-Net (certified)
THeont = 0.2 THeont = 0.5 THeont = 0.8 THpoy = 0.3 THpoy = 0.5 THiy = 0.8
1.0 Qi T 1.0 1.0 -wi
- 09 0.8 0.8 D
£ .
2 06 o 06
% 08 04 2 04
A 07 02 0.2
e
06 00 00 . !
0 5 10 15 20 25 30 0 5 10 15 20 25 30 0 5 10 15 20 25 30 0 5 10 15 20 25 30 0 5 10 15 20 25 30 0 5 10 15 20 25 30
attack € attack € attack € attack € attack € attack €
(a) Robustness certification for rotation transformation (smoothing o = 0.25)
THeopf = 0.2 THeonf = 0.5 THeop = 0.8 THy = 0.3 THy = 0.5
10 = —— | 1.0 1.0
- 08 0.8 0.8 0.8
% 0.6 = 0.6 0.6 0.6
2 o4 S 04 04 0.4
S o2 02 0.2 02
0.0 00 0.0 00
0 1 12 13 14 15 10 1 12 13 14 15 10 11 12 13 14 15 10 11 12 13 14 15 10 11 12 13 14 15 10 11 12 13 14 15
attack € attack € attack € attack € attack € attack €
(b) Robustness certification for shift transformation
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(c) Robustness certification for rotation transformation (smoothing o = 0.5)

Figure 6: Robustness certification for rotation and shifting transformation, including detection rate bound and IoU bound. Solid lines repre-
sent the certified bounds, and dashed lines show the empirical performance under PGD.
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Figure 7: Robustness certification for shifting transformation, including detection rate bound and IoU bound. Solid lines represent the
certified bounds, and dashed lines show the empirical performance under PGD.



Table 5: Overview of rotation transition experiment results with different sampling strategies under the condition “color 1
with buildings without pedestrian”. Each row represents the corresponding model and attack radius. Columns “Certification
(sparse)”, and “Certification (dense)” represent the certified lower bound of performance under attacks with intervals of 0.1°

and 600 intervals respectively.

(a) Certified rotation detection rate.

Certification (sparse)

Certification (dense)

Model l Attack Radius l Det@20  Det@50  Det@80 | Det@20  Det@50  Det@80
MomoCon £ 100 0B333%  9333%  8667% | 9333%  93.33%  8667%
(Liu, Xoe. and Wa 2022) r + 20° 9333%  93.33%  8667% | 9333%  93.33%  86.67%
r & 30° 86.67%  86.67%  86.67% | 86.61%  86.67%  86.61%
SECOND 7 100 100.00%  100.00%  0.00% | 100.00%  100.00%  0.00%
(Yan, Mag. and Li 2018) r £ 20° 100.00%  10000%  0.00% 100.00%  100.00%  0.00%
r & 30° 100.00%  66.67% 000% | 100.00%  66.67% 0.00%
cLoGs R B I
1 is g adha ™ 20 .00% .00% 3.33% .00% .00% .33%
(Pang, Morris, and Radha 2020) r £ 30° 100.00%  $0.00%  7333% | 100.00%  80.00%  73.33%
FocalsCom 7 100 100.00%  100.00%  100.00% | 100.00%  100.00%  100.00%
(Chon ot a1, 2022) r + 20° 10000%  100.00%  100.00% | 100.00%  100.00%  100.00%
r + 30° 100.00%  100.00%  100.00% | 100.00%  100.00%  100.00%

(b) Certified rotation IoU.

ok Radius Certification (sparse) Certification (dense)
Model ‘ AttackRadius | s\p@30  AP@S0)  AP@70 | AP@30  AP@50 _ AP@70
MonoCon r £ 100 86.67% 0.00% 0.00% 86.67% 0.00% 0.00%
(Liu, Xue, and Wu 2022) r 4 20° 13.33% 0.00% 0.00% 13.33% 0.00% 0.00%
) | r 4 30° 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
SECOND r £ 100 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
(Yan, Mao, and Li 2018) r 4 20° 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
i ) r 4 30° 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
CLOCs r £ 100 100.00% 100.00% 0.00% 100.00% 100.00% 0.00%
(Pang, Morris, and Radha 2020) r 4 20° 100.00% 93.33% 0.00% 100.00% 93.33% 0.00%
i ’ r 4 30° 100.00% 53.33% 0.00% 100.00% 53.33% 0.00%
FocalsCony r £ 100 100.00% 0.00% 0.00% 100.00% 0.00% 0.00%
(Chen et al. 2022) £ 20° 0.00% 0.00% 0.00% 13.33% 0.00% 0.00%
r 4 30° 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
=l MonoCon (empirical) SECOND (empirical) CLOCs (empirical) =A= FocalsConv (empirical) == MVX-Net (empirical)
=== MonoCon (certified) SECOND (certified) CLOCs (certified) === FocalsConv (certified) == MVX-Net (certified)
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Figure 8: Robustness certification for rotation transformation (smoothing o = 0.5), including detection rate bound and IoU
bound. Solid lines represent the certified bounds, and dashed lines show the empirical performance under PGD. z-axis is the
threshold for confidence score (THconf) and IoU score (THyou), and y-axis is the ratio of detection whose confidence / IoU score
is larger than the confidence / IoU threshold.



Table 6: Overview of rotation transformation experiment results (smoothing o = 0.5). Each row represents the correspond-
ing model and attack radius. “Benign”, “Adv (Vanilla)”’, “Adv (Smoothed)”, and “Certification” stands for benign perfor-
mance, vanilla models’ performance under attacks, smoothed models’ performance under attacks, and certified lower bound of
smoothed model performance under attacks. Each column represents the results under different thresholds.

(a) Detection rate under rotation transformation

Model [ Attack Radius [ Benign [ Adv (Vanilla) [ Adv (Smoothed) [ Certification
* Det@20  Det@50  Det@80 | Det@20  Det@50  Det@80 | Det@20  Det@50  Det@80 | Det@20  Det@50  Det@80
[r] < 10 70.97% 70.97% 58.06% 7097% 7097% 58.06% 70.97% 70.97% 58.06%
MonoCon |r] < 15° 70.97% 70.97% 58.06% 70.97% 70.97% 58.06% 70.97% 70.97% 58.06%
(Liu, Xue, and Wu 2022) |7 < 20° 100.00% 100.00% 100.00% 70.97% 70.97% 58.06% 70.97% 70.97% 58.06% 70.97% 70.97% 58.06%
|| < 25° 70.97% 70.97% 45.16% 70.97% 70.97% 45.16% 70.97% 70.97% 45.16%
|r] < 30° 70.97% 70.97% 32.26% 70.97% 70.97% 32.26% 70.97% 70.97% 30.65%
[7[ < 10° 100.00%  100.00% 0.00% 100.00% 58.06% 0.00% 100.00% 3387% 0.00%
SECOND |r| < 15° 100.00%  100.00% 0.00% 100.00% 58.06% 0.00% 100.00% 25.81% 0.00%
(Yan, Mao, and Li 2018) |r] < 20° 100.00% 100.00% 100.00% 100.00%  100.00% 0.00% 100.00% 54.84% 0.00% 100.00% 22.58% 0.00%
|r] < 25° 100.00% 12.90% 0.00% 100.00% 54.84% 0.00% 100.00% 22.58% 0.00%
|| < 30° 67.74% 3.23% 0.00% 100.00% 54.84% 0.00% 100.00% 20.97% 0.00%
[~] < 10° 100.00%  100.00%  100.00% | 100.00%  100.00% 96.77% 100.00%  100.00% 87.10%
CLOCS |r] < 15° 100.00%  100.00%  100.00% | 100.00%  100.00% 95.16% 100.00% 98.39% 87.10%
(Pang, Morris, and Radha 2020) |r| < 20° 100.00%  100.00%  100.00% 100.00%  100.00%  100.00% 100.00%  100.00% 95.16% 100.00% 95.16% 79.03%
|r| < 25° 100.00% 91.94% 20.97% 100.00%  100.00% 95.16% 100.00% 95.16% 79.03%
|| < 30° 100.00% 74.19% 3.23% 100.00%  100.00% 95.16% 100.00% 93.55% 79.03%
7] < 10 100.00%  100.00%  100.00% | 100.00%  100.00%  100.00% | 100.00%  100.00%  100.00%
FocalsConv |r| < 15° 100.00%  100.00%  100.00% | 100.00%  100.00%  100.00% | 100.00%  100.00%  100.00%
(Chen et al. 2022) |r] < 20° 100.00%  100.00%  100.00% 100.00%  100.00%  100.00% 100.00%  100.00%  100.00% 100.00%  100.00%  100.00%
|r] < 25° 100.00%  100.00%  100.00% | 100.00%  100.00%  100.00% | 100.00%  100.00%  100.00%
|r] < 30° 100.00% _100.00% 98.39% 100.00%  100.00%  100.00% | 100.00%  100.00% _ 100.00%
[7[ < 10° 100.00%  100.00%  100.00% | 100.00%  100.00%  100.00% | 100.00%  100.00%  100.00%
MVX-Net |r] < 15° . ; ; 100.00%  100.00%  100.00% | 100.00%  100.00%  100.00% | 100.00%  100.00%  100.00%
(Sindagi, Zhou, and Tuzel 2019) |r| < 20° 100.00%  100.00%  100.00% 100.00%  100.00% 90.32% 100.00%  100.00%  100.00% 100.00%  100.00%  100.00%
|r| < 25° 100.00%  100.00% 3.23% 100.00%  100.00%  100.00% | 100.00%  100.00%  100.00%
|| < 30° 100.00% _100.00% 3.23% 100.00% _100.00% 93.55% 100.00% _ 100.00% 99.71%

(b) IoU with ground truth under rotation transformation

Model Attack Radius l Benign Adv (Vanilla) ‘Adv (Smoothed) Certification
AP@30 AP@50 AP@80 AP@30  AP@50 @80 | AP@30 AP@50  AP@80 AP@30  AP@50  AP@80
[+] < 10 56.45% 56.45% 0.00% 56.45% 56.45% 0.00% 54.84% 0.00% 0.00%
MonoCon |r| < 15° 54.84% 54.84% 0.00% 54.84% 54.84% 0.00% 54.84% 0.00% 0.00%
(Liu, Xue, and Wu 2022) |r| < 20° 100.00% 100.00% 100.00% 54.84% 53.23% 0.00% 54.84% 53.23% 0.00% 17.74% 0.00% 0.00%
|r| < 25° 51.61% 35.48% 0.00% 51.61% 35.48% 0.00% 0.00% 0.00% 0.00%
|| < 30° 46.77% 0.00% 0.00% 46.77% 0.00% 0.00% 0.00% 0.00% 0.00%
|7| < 10 96.77% 96.77% 0.00% 100.00%  100.00% 0.00% 0.00% 0.00% 0.00%
SECOND |r| < 15° 96.77% 96.77% 0.00% 100.00%  100.00% 0.00% 0.00% 0.00% 0.00%
(Yan, Mao, and Li 2018) |r| < 20° 100.00%  100.00% 100.00% 96.77% 96.77% 0.00% 100.00% 100.00% 0.00% 0.00% 0.00% 0.00%
|r| < 25° 83.87% 83.87% 0.00% 100.00%  100.00% 0.00% 0.00% 0.00% 0.00%
|r] < 30° 51.61% 51.61% 0.00% 93.55% 93.55% 0.00% 0.00% 0.00% 0.00%
|7| < 10 90.32% 90.32% 90.32% 100.00%  100.00%  96.77% 100.00%  96.77% 0.00%
CLOCs |r] < 15° ; . : 90.32% 90.32% 90.32% 100.00%  100.00%  96.77% 95.16% 91.93% 0.00%
(Pang, Morris, and Radha 2020) |r| < 20° 100.00% 100.00% 100.00% 88.71% 88.71% 77.42% 100.00% 100.00%  96.77% 95.16% 91.93% 0.00%
|r| < 25° 87.10% 87.10% 0.00% 100.00%  100.00%  96.77% 95.16% 91.93% 0.00%
|r| < 30° 88.71% 88.71% 3.26% 98.39% 98.39% 67.74% 98.39% 53.23% 0.00%
[7] < 10° 96.77% 96.77% 0.00% 100.00%  100.00% 0.00% 100.00% 0.00% 0.00%
FocalsCony |r] < 15° : . . 96.77% 0.00% 0.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00%
(Chen et al. 2022) |r| < 20° 100.00% 100.00% 100.00% 96.77% 0.00% 0.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00%
|r| < 25° 96.77% 0.00% 0.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00%
|r] < 30° 96.77% 0.00% 0.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00%
[r] < 10 96.77%  96.71% 0.00% 100.00%  100.00% 0.00% 100.00% 0.00% 0.00%
MVX-Net |r] < 15° : . . 96.77% 96.77% 0.00% 100.00%  100.00% 0.00% 100.00% 0.00% 0.00%
(Sindagi, Zhou, and Tuzel 2019) |r| < 20° 100.00%  100.00%  100.00% | 96.77% 96.77% 0.00% 100.00%  100.00% 0.00% 17.74% 0.00% 0.00%
|r| < 25° 96.77%  15.81% 0.00% 100.00%  100.00% 0.00% 0.00% 0.00% 0.00%
|r| < 30° 96.77% 75.81% 0.00% 100.00% _ 100.00% 0.00% 0.00% 0.00% 0.00%




(d) Shifting failure cases

Figure 9: Rotation and shifting failure cases.



