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ABSTRACT
For large industrial applications, system test cases are still often de-
scribed in natural language (NL), and their number can reach thou-
sands. Test automation is to automatically execute the test cases.
Achieving test automation typically requires substantial manual
effort for creating executable test scripts from these NL test cases.
In particular, given that each NL test case consists of a sequence of
NL test steps, testers first implement a test API method for each test
step and then write a test script for invoking these test API methods
sequentially for test automation. Across different test cases, multi-
ple test steps can share semantic similarities, supposedly mapped
to the same API method. However, due to numerous test steps in
various NL forms under manual inspection, testers may not realize
those semantically similar test steps and thus waste effort to imple-
ment duplicate test API methods for them. To address this issue,
in this paper, we propose a new approach based on natural lan-
guage processing to cluster similar NL test steps together such that
the test steps in each cluster can be mapped to the same test API
method. Our approach includes domain-specific word embedding
training along with measurement based on Relaxed Word Mover’s
Distance to analyze the similarity of test steps. Our approach also
includes a technique to combine hierarchical agglomerative cluster-
ing and K-means clustering post-refinement to derive high-quality
and manually-adjustable clustering results. The evaluation results
of our approach on a large industrial mobile app, WeChat, show
that our approach can cluster the test steps with high accuracy,
substantially reducing the number of clusters and thus reducing
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the downstream manual effort. In particular, compared with the
baseline approach, our approach achieves 79.8% improvement on
cluster quality, reducing 65.9% number of clusters, i.e., the number
of test API methods to be implemented.
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1 INTRODUCTION
To test a large industrial application, testers analyze the applica-
tion’s requirements, design user scenarios, and then instantiate
them in manually written test cases, typically described in natural
language (NL). The main content of an NL test case is a sequence
of test steps described in NL. Despite the advances in automated
testing, manually written test cases are still prevalent in industrial
practice, because they are easily adjustable and interpretable, pro-
vide clear targets of user scenarios, and are sometimes inherited
from legacy systems.

Given that NL test cases are not automatically executable, it
becomes inevitable to automate the execution of these test cases,
referred to as test automation [32], especially for the purpose of con-
tinuous integration and regression testing.Without test automation,
to execute a test case, human testers must read through its test steps
and carry them out by hand by interacting with the application un-
der test. When the application becomes large, the number of these
test cases can reach thousands, making test automation a necessity.
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Test Case #8710
Description: User adds bank card for 
payment.

1. User requests to add bank card for 
payment.
2. User submits bank card information
3. User confirms

Test Case #8767
Description: User resets security code

1. User requests to reset security code
2. User submits security code request
message
3. User selects “confirm”

Test Steps:
Test Steps:

def select_confirm(self):
  """User choose confirm"""
  # wait for content to appear #
  aui.WalletCardElementUI(self.serial).wait_exists()
  # verify OCR data #
  self.check_ocr_content("registered_User_selected_confirmation")
  # step operation #
  aui.WalletPayUI(self.serial).click_btn_confirm()

Test API method:

   

Figure 1: Examples of NL test cases for testing WeChat. The
two test cases, namely case #8710 and case #8767, are de-
signed for simulating different user scenarios. Each test case
contains three test steps. Each test step should be imple-
mented by a test API method for test automation. The third
step of both test cases, despite having different descriptions,
can be clustered and mapped to the same test API method
illustrated in the bottom (select_confirm()).

In the existing industry practice, test automation of a test case
consists of two phases, with the first phase requiring substantial
manual effort: (1) manually implementing test-step API methods
(in short as test API methods) and (2) automatically composing
these test API methods. In particular, in Phase 1, testers manually
translate each test step in the test case to a test API method that
implements the described action in the test step. This phase is done
manually due to the high complexity of user interface elements
and pre/post-validations. For a large application under test, the
number of test steps can reach thousands. Hence, manually imple-
menting test API methods for these test steps requires substantial
manual effort. In Phase 2, the corresponding test API methods for
the test steps in the test case are sequentially composed to form an
executable test script. This phase of composition is automated.

Even worse, quite some manual effort in the first phase is often
wasted because in practice testers oftenmay not realize the semantic
similarity of multiple test steps and waste development effort for
implementing duplicate test API methods (instead of just one) for
them. According to our empirical investigation on existing test
API methods implemented by WeChat testers, it is common that
multiple test steps written differently share semantic similarity, and
are supposed to be implemented by the same single test API method.
The main reason is that test steps are written by multiple people,
and it is hard for them to know whether and how other testers
express the same test step. Figure 1 illustrates two example test
cases from the industrial practice of testing WeChat, an industrial
mobile app with over a billion active users. Although these two
test cases’ third test steps have different descriptions, i.e., “user
confirms” and “user selects ‘confirm’ ”, the two steps are supposed
to be mapped to the same test API method (as illustrated in the
bottom of Figure 1).

To address this issue, in this paper, we propose a new approach,
with a supporting tool named Clustep, to cluster test steps based
on their NL similarities, overcoming the limitations of existing
clustering approaches. Some existing clustering approaches [3, 15,
36, 37] simply compare the literal equivalence or word-sharing ratio
between test steps, but these approaches tend to miss similar test
steps that should bemerged together. Some other existing clustering
approaches [1, 26] compare code similarity of their corresponding
test API method implementations, but these approaches require
substantial duplicate effort on manual implementation of test steps
beforehand.

We propose our approach based on our four domain-specific
insights for our application setting. First, the NL test steps use
a very limited number of words, many of which are synonyms
but not identical. Second, the NL test steps have very simple and
similar grammatical structure. Third, besides improving clustering
accuracy, it is highly important to reduce the number of clusters,
because it is more efficient to implement related (somewhat but not
highly similar) test steps (sharing some lines of code) by a single
parameterized test API method, than writing multiple test API
methods with some lines of code duplicated across them. Fourth,
the clustering results should be manually adjustable, so that testers
can further refine the results.

To produce high-quality clustering results while reducing the
number of clusters, our approach includes multiple novel tech-
niques for similarity analysis and clustering, proposed based on our
domain insights. Inspired by Insight 1, our approach includes word
embedding retraining [21] for word similarity analysis. Based on In-
sight 2, our approach measures test step distance based on Relaxed
Word Mover’s Distance [11]. From Insights 3 and 4, our approach
includes an effective combination of hierarchical agglomerative
clustering [29] with K-means clustering [17] post-refinement to
produce high-quality and manually adjustable clustering results.
The combined-clustering technique focuses on reducing the num-
ber of clusters while maintaining high clustering accuracy, and in
the meantime producing manually adjustable clustering results.

Our approach is purely unsupervised, i.e., it does not rely on the
existing labeled data set of mapping a test step to a test API method.
Nor does our approach require manually derived features, thus
assuring its generalizability and universality to various application
settings.

To assess our approach, we conduct an evaluation on a large-
scale test case dataset of WeChat, an industrial mobile app with
over a billion active users. We measure the clustering accuracy by
F-score, which penalizes both false positives and false negatives.
Our evaluation results show that our approach achieves 79.8% im-
provement on cluster accuracy, while reducing 65.9%manual effort
in terms of the number of test API methods, compared with a base-
line approach based on keyword extraction and duplicate removal.
These results show that our approach can substantially improve pro-
ductivity and reduce downstream manual effort on test automation
in large industry setting. The implementation for our approach has
been integrated into the app testing system deployed for WeChat
testing practice.

This paper makes the following main contributions:
• Natural Language Processing Techniques for Test Step Analysis.
We develop domain-specific word embedding training, and
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measurement based on Relaxed Word Mover’s Distance to
analyze the similarity of test steps.

• High-Quality and Adjustable Test Step Clustering.We develop
a technique to combine hierarchical agglomerative cluster-
ing and K-means clustering post-refinement to derive high-
quality and manually-adjustable clustering results.

• Evaluation and Discussion.We implement our approach with
a supporting tool named Clustep, and conduct an evalua-
tion, whose results demonstrate high effectiveness of our
approach. We also discuss the failure cases (i.e., cases where
our approach fails) and discuss multiple issues and limita-
tions in the existing practice of writing NL test steps.

The remainder of this paper is organized as follows. §2 discusses
related work. §3 states the preliminaries. §4 presents our approach
in detail. §5 discusses the implementation. §6 presents the evalua-
tion and discussion. §7 discusses failure cases and threats of validity.
§8 concludes the paper.

2 RELATEDWORK
Our work aims for automating test automation and is closely related
to clustering and natural language processing.

Automating Test Automation. The concept of automating
test automation is proposed by Thummalapenta et al. [32]. Their
work proposes an approach to infer a sequence of action-target-
data tuples from test cases manually written in NL. Their work
uses POS Tagger [34] to annotate words and then calculates de-
pendencies and grammar relationships between the words. The
differences between their work and ours are two folds. First, their
work uses traditional POS analysis for extracting a certain type
of relation (i.e., “action” done on “target” using “data”) by sen-
tence structure analysis and field filling using literal entities. Their
work cannot detect similarities between test steps, while our work
makes use of similarities. Second, their work specifically generates
DOM UI test cases for web applications, whereas our work is more
general—it can be used whenever test steps are available. Little
and Miller [15] translate keyword commands to executable code by
keyword matching. Recent progress comes from Wang et al. [37],
whose work generates system tests based on NL requirements using
keyword/transformation rule matching and word relation extrac-
tion. All the preceding work uses traditional NLP techniques and
relies on human-encoded rules to extract certain types of relations.

On manual analysis of use cases, Fantechi et al. [7] and Sinha
et al. [28] use linguistic techniques to analyze use cases. The auto-
matic test generation approach proposed by Sinha et al. [28], though
preliminary, can be seen as a step toward automating test automa-
tion. Another direction for test automation (e.g., Text2Test [27],
CoTester [18], and Cucumber [4]) is to write use cases and test
cases using scripting languages, which are both human friendly
and machine friendly.

In contrast to the related work, our work can effectively detect
the semantic similarities between general NL test steps without
any human supervision or tagging. Moreover, our work does not
rely on use cases or test cases written in scripting languages.

Natural Language Processing (NLP) and Clustering. Neu-
ral networks and deep learning have boosted NLP in recent year,

including text classification [12], machine translation [35], and read-
ing comprehension [5]. Word2vec [21] can be viewed as one-layer
fully-connected autoencoder neural network that generates word
embeddings. Word embeddings are high-dimension number vectors
that represent the words. The embeddings can capture the seman-
tic and syntactic meanings of words and logical relations. Various
approaches have been proposed to represent sentences or passages
in embeddings [13] and measure sentence or document distance
by embeddings of their contained words [11]. Our proposed ap-
proach leverages word embeddings, but includes new techniques
tailored for test steps. Clustering techniques [9] can classify pat-
terns or data items into groups (i.e., clusters). Popular clustering
techniques include K-means [17], DBSCAN [6], GMM [24], and Hi-
erarchical Agglomerative Clustering [29]. Our proposed approach
combines existing clustering techniques to address domain-specific
requirements in our application setting.

3 PRELIMINARIES
Objective. Our approach is a clustering approach—the clustering
result is a partition of the given set of test steps. The objective of our
approach is to produce manually adjustable clusters for achieving
high clustering accuracy, while minimizing the number of clusters.
First, the high accuracy is defined as minimizing inconsistency
between the produced clustering results and the ground-truth re-
sults. We use the widely-used F-score [19, 30] as the evaluation
metric for the clustering. Higher accuracy indicates less manual
post-adjustment needed. Second, minimizing the number of clusters
is also highly important in our objective. Fewer clusters indicate
fewer test API methods needed to be implemented. To produce
fewer clusters while still achieving high clustering accuracy, we
can leverage the parameters in test API methods to distinguish
different but sufficiently similar test steps. Third, the clustering
results shall be amenable to manual adjustment. Since there exists
no guarantee for the clustering results to be 100% correct, manual
adjustment is needed in practice of applying the approach. It is
expected that the approach supports real-time manual adjustment
including cluster splitting, cluster merging, and changing cluster
attribution of individual samples.

Dataset Setting and Characteristics. We study the manually
constructed test cases for testing WeChat, a large industrial mobile
app with over a billion active users. Table 1 shows some basic
statistics of the dataset.

This dataset can serve as a reasonable representative of system
test cases for a large industrial app for three main reasons. First,
the dataset structure is standardized. All test cases are manually
written in a typical structured format. Second, the dataset is clean.
There are no unfinished nor invalid test cases. Third, the dataset
size is relatively large. There are several thousands of test steps.

In particular, the dataset consists of a set of test cases. Each test
case contains five fields: Target System, Business Type, Main Execu-
tor, Case Description, and Test Description. The “Test Description”
field is a sequence of test steps. We consider the clustering of all
test steps across all test cases. From manual inspection of existing
test API methods, besides test steps themselves, considering only
the Main Executor field of the belonging test case is sufficient to
know the mappings from test steps to test API methods. Thus, we
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Table 1: Dataset statistics. “#” stands for “number”. “Avg.”
stands for “Average”.

# Test Cases 745 # Test Steps 3, 664
# Distinct Target Systems 10 # Distinct Test Steps 1, 379
# Distinct Business Types 127 # Distinct Words in Test Description 718
# Distinct Main Executors 125 Avg. # Words per Test Description 4.043
# Distinct Case Descriptions 512 Avg. Word Frequency 20.63

consider only these two fields in our approach. In a sense, each
test step can be viewed as a ⟨Main Executor, Test Description⟩ tuple,
where both fields are described in NL.

Figure 1 shows the examples of NL test cases including test steps
and a mapped test API method. As we can see, the Test Description
fields specify test actions. The Main Executor fields (not shown in
the figure) typically specify the identity of action initiator, such
as “Authenticated User”, “Manager”, and “Merchant”. The test API
methods have no parameter, because the data generated during
testing is either handled by the implementation of test API methods
or handled by our testing infrastructure.

From Table 1 and Figure 1, we have four main observations. First,
these test steps use limited words: only 718 distinct words occur
in 3, 664 test steps. Second, these test steps are highly duplicated:
there are only 1, 379 distinct test steps. Third, the grammatical
structure of these test steps is simple and monotonic, mainly fol-
lowing the “user+verb.+object” form. Fourth, synonyms are preva-
lent: from manual inspection, we find that synonyms such as “con-
firm”/“accept”, “click”/“choose” frequently occur. Related work [32]
also observes similar NL characteristics from manually written use
cases and test cases. The design of our approach makes use of these
characteristics.

4 APPROACH
The overview of our approach is shown in Figure 2. First, we do
preprocessing for all test steps. The preprocessing parses the Test
Description sentences and Main Executor phrases to the lists of no-
tional words. Then, we feed the lists to train domain-specific word
embeddings using word2vec [21]. The word embeddings encode the
words as numerical vectors, where the mutual distances capture the
word semantic similarities. After that, given the word embeddings,
we compute the pairwise test step distance using RMWD-based dis-
tance measurement [11]. Finally, the test steps are clustered using
our effective combination of hierarchical agglomerative cluster-
ing [29] and K-means clustering [17].

Running Example. The bottom of Figure 2 shows a running
example. First, the input dataset has two test steps whose Test
Description fields are “User chooses return.” and “User chooses
cancel.”. After preprocessing, the sentences are parsed to a list of
words in their stem form, where “User chooses return.” becomes
[“user”, “choose”, “return”]. Then, we collect all occurring
words in the dataset and train domain-specific word embeddings.
As a result, each test step can be viewed as a list of word vectors.
After that, we compute the pairwise test step distance based on
the word vectors using RMWD-based distance measurement. For
example, the distance between the preceding two test steps can be
as small as 0.1 due to the semantic similarity between “return” and
“cancel”. Finally, we use our effective clustering technique to group

these two steps into one cluster, which is then assigned a single
test API method.

We next describe each technique in detail, and also discuss mul-
tiple variants of our approach.

4.1 Preprocessing
Dataset preprocessing is the first stage of our approach. We split
each test case field’s text to an ordered list of words. To avoid bias
from scarce words and irregular expressions, we remove all words
that occur only once over the whole corpus. Furthermore, we also
remove stop words, i.e., words that frequently occur but have no
actual meaning. As a result, we remove 21 words and keep 697
words. After this procedure, all fields of test steps are sequences of
notional words.

Then, we label domain-specific phrases as a single word. From
manual inspection, we find that domain-specific phrases frequently
occur, but similar phrases can result in totally different meanings.
For example, “complete registered payer” and “simplified registered
payer” have two words in common, but they are treated as distinct
entities, and they correspond to different test API methods. Previ-
ously, we have maintained a terminology list for human test step
writers to regularize the wording. We parse this terminology list
and label each of these phrases in the list as a single word.

4.2 Training of Word Embeddings
Word embeddings, i.e., high-dimension number vectors, are trained
to represent words. Fine-trained word embeddings preserve seman-
tic and syntactic meanings of the words in the vector space [21].

Motivation. The dataset statistics (Table 1) show that the do-
main of test cases is dense in terms of words, i.e., the whole corpus
uses limited words (718) and an individual word occurs with high
frequency (20.63) on average. Therefore, although the size of the
dataset is relatively small, the high density still supplies sufficient
samples to learn the word embeddings. This characteristic differen-
tiates test steps from data in other domains with similar size.

Model. We use word2vec [21], concretely, the skip-gram model,
for word embedding training. To apply skip-gram, we use all pairs
of co-occurring words as the input. “Co-occurring words” explicitly
denote the words located closely to each other in a sentence or
phrase. The motivation of the training scheme is that the neighbor-
ing words represent the context and imply the meaning of this word.
This motivation also holds with test steps. For example, “return”
and “cancel” have similar meanings in test steps, and they both
co-occur with “choose”, ”previous”, etc.

Improvements. Although the preceding observation indicates
that only the Test Description and Main Executor fields are useful
for clustering test steps, to better learn the context, we consider all
test case fields including the Case Description field to construct the
training dataset.

The training dataset is the set of adjacent word pairs. However,
the fields of test steps are relatively short (on average only 4.043
words, see Table 1), so adjacent word pairs are limited. To mitigate
this issue, we observe that test steps inside a test case are ordered
by sequence, i.e., except the head and tail, each test step has its
adjacent steps. Thus, we take adjacent steps into consideration by
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Test Steps Preprocessing Word Embedding 
Training

“User chooses return.”
“User chooses cancel.”
…

[“user”, “choose”, “return”]
[“user”, “choose”, “cancel”]
…

Distance 
Measurement

[(0.5,1.5,…), …, (1.1, 1.2, …)]
[(0.5,1.5,…), …, (1.0, 1.1, …)]
…

𝐷!" = 0.1,…

Clustering

𝑠!, 𝑠" , …

Post-
Refinement

𝑠!, 𝑠" , …

· · ·
· · ·

0 13.2 8.7 12.1 0.1

13.2 0 5.6 3.2 21.4

8.7 5.6 0 2.7 7.8

12.1 3.2 2.7 0 0.2

0.1 21.4 7.8 0.2 0

Figure 2: An overview of our approach. The running example is shown in the bottom. The word embedding training is based
on word2vec. The distance measurement is relaxed word mover’s distance (RWMD). The clustering is based on hierarchical
agglomerative clustering, and is further refined by K-means.

concatenating the whole sequence of test steps in each test case to
form a single long sentence to generate word pairs.

Use of Pre-trainedModelWeights.We initialize the word em-
beddings using pre-trained word2vec model weights for common
words on a large mixed corpus [22]. The word embeddings have 300
dimensions. The pre-trained model weights initialize 87.80% (612)
of the total 697 words. We compute the mean and standard deriva-
tion of these 612 words and initialize the other words by sampling
over the normalized distribution parameterized by this mean and
standard derivation. Although the pre-trained model contains word
embeddings for over 1 million common words, there are still only
87.80% of test-step words that can be initialized. This result indi-
cates that the language domain of test cases is relatively specific,
justifying the inevitability of retraining over this special corpus
rather than directly using the pre-trained model.

TrainingResults.We calculate the pairwise likelihood between
co-occurring words as the indicator of word embedding quality
(the higher likelihood the better).

After initialization from the pre-trained model, the initial likeli-
hood is just around 70%, indicating the large domain discrepancy
between the general language context and the test step language
domain. The discrepancy is shrunk quickly—after 6 epochs, the like-
lihood exceeds 90%. The overall process takes less than 5 minutes
on a typical laptop CPU.

Variant: RNN (RNNEmbed). A variant of our technique is to
use the recurrent neural network (RNN) [25], which is widely used
in NLP. We adopt long short-term memory based RNN [8] for our
application setting. We build an RNN language model similar to the
RNN for widely used Penn Treebank dataset [20]. In each iteration,
for test steps, we feed theMain Executor field concatenated with the
Test Description field as sentences. The model is trained to conver-
gence in 30 epochs and 5min. Then, we retrieve the weights of word
embedding layer and directly use them as the word embeddings.
We denote this variant RNNEmbed.

4.3 Measurement of Test-Step Similarity
Kusner et al. [11] propose a fast and efficient sentence distance
measurement—Relaxed Word Mover’s Distance (RWMD). RWMD
is a tight lower bound ofWordMover’s Distance (WMD).WMDuses
Euclidean distance of word embeddings as the word transformation
cost and measures the sentence distance by the minimum cost of
transforming each word from one sentence to the other. The direct

calculation of WMD is too costly, but the relaxed lower bound
RWMD can be efficiently computed. The tightness of the bound
and the efficiency are verified in multiple classical NLP tasks [11].

Formally, for word𝑤𝑖 , we use 𝑓𝑖 to denote its number of occur-
rences in the current sentence, and then we represent the sentence
by normalized word frequency vector x, where each component
𝑥𝑖 = 𝑓𝑖/

∑
𝑗 𝑓𝑗 encodes the normalized frequency of word 𝑤𝑖 . Let

the vector v𝑖 denote the word embedding of word𝑤𝑖 that we have
obtained in §4.2. On two sentences x and x′, the RWMD distance
is defined as below:

RWMD(x, x′) = max
(
ℓ1 (x, x′), ℓ2 (x, x′)

)
, where

ℓ1 (x, x′) =
𝑛∑

𝑖,𝑗=1
𝑡𝑖,𝑗 ∥v𝑖 − v𝑗 ∥2 s.t. 𝑡𝑖,𝑗 =

{
𝑥𝑖 , 𝑗 = argmin𝑗 ∥v𝑖 − v𝑗 ∥2
0; otherwise

ℓ2 (x, x′) =
𝑛∑

𝑖,𝑗=1
𝑡 ′𝑖,𝑗 ∥v𝑖 − v𝑗 ∥2 s.t. 𝑡 ′𝑖,𝑗 =

{
𝑥′𝑗 , 𝑖 = argmin𝑖 ∥v𝑖 − v𝑗 ∥2
0. otherwise

Another lower bound of WMD is Word Centroid Distance:

WCD(x, x′) =
 𝑛∑
𝑖=1

𝑥𝑖vi −
𝑛∑
𝑗=1

𝑥 𝑗vj


2
.

Combining these two lower bounds, we develop the final distance
metric 𝑑 (x, x′) = max(WCD(x, x′), RWMD(x, x′)) .

We calculate the distance between the Main Executor and the
Test Description fields of test steps separately. All pairs of Main
Executor distances and Test Description distances are normalized
to the same mean. Then, the final distance between two test steps,
denoted as 𝑑 , is the weighted sum of the distance of these two
fields, namely 𝑑1 and 𝑑2. Let𝑤ME be the relative weight of the Main
Executor field with respect to the Test Description field, we have
𝑑 = 𝑤ME𝑑1 + 𝑑2. From a search on the parameters, we find that
𝑤ME = 0.075 yields the best performance.

Variants: Vectorization Based Measurements. Another cat-
egory of measurements is based on the vector representation of test
steps. We next introduce multiple variants that generate numerical
vectors for test steps. Then we use the Euclidean distance of the
corresponding vectors as the metric.

The TF-IDF (Term Frequency times Inverse Document Frequency)
is a classical numerical statistic intended to reflect the word impor-
tance to a document in the corpus [23]. Formally, let𝑚 denote the
number of words, and all words comprise the set {𝑤𝑖 : 1 ≤ 𝑖 ≤ 𝑚}.
TF (tf𝑡,𝑖 ) is the number of occurrences of the word𝑤𝑖 in field 𝑡 . It
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measures the local word frequency. Let 𝑁 denote the number of test
steps, and 𝑛𝑖 denote the number of test steps where word𝑤𝑖 occurs.
IDF (idf𝑖 ) measures the global word importance: idf𝑖 = log2 (𝑁 /𝑛𝑖 ).

TF-IDF Based Vectorization (TFIDF). We can represent test steps
by TF-IDF field vectors. For each field 𝑓 ∈ {ME,TS}, define tfidf𝑡,𝑖,𝑓 =

tf𝑡,𝑖,𝑓 ×idf𝑖,𝑓 tomeasure theweight of eachword𝑤𝑖 . Then the field is
represented by the vector [tfidf1,𝑓 , tfidf2,𝑓 , . . . , tfidf𝑚,𝑓 ]⊤. Let𝑤ME
be an adjustable weight parameter similar to before, and z1, z2 are
such vectors of the two fields, respectively. The weighted normal-
ized concatenation, (𝑤MEz1) ⊕ z2, is the TF-IDF based vectorization
of the test step. Given that the vectorization is relatively sparse as
each field has only a few words, we apply PCA [10] to reduce the
vector dimension to 200. We denote this variant by TFIDF.

Word Embedding + IDF Vectorization (IDFEmbed). Because IDF
measures the global word importance, another vectorization tech-
nique is the IDF weighted sum of word embeddings. Compared to
TF-IDF based vectorization, this vectorization technique benefits
from word embeddings. We denote this variant by IDFEmbed.

RNN (RNNHidden). The RNN language model that we have
trained (§4.2) can provide not only word embeddings but also sen-
tence embeddings. Concretely, after the RNN model receives the
test step sentence as the input, on each word, the LSTM neurons
of the model have a “hidden memory” of the current state, which
is a numerical vector. We compute the average of these vectors
from each word as the test step vector. We denote this variant by
RNNHidden.

4.4 Hierarchical Agglomerative Clustering
with K-means Post-Refinement

To this point, we attain the pairwise distance between test steps.
We can then apply the clustering algorithm.

Hierarchical Agglomerative Clustering. In Hierarchical Ag-
glomerative Clustering [29], at first, each sample is a cluster, and
then the algorithm iteratively merges two nearest clusters together
until there is only one cluster remaining. The merging criterion
is choosing the pair of clusters that have the minimum average
distance between all pairs of their elements. Thus, a binary tree
indicating the cluster hierarchy can be constructed. Using this fea-
ture, the clustering results support manual adjustment: the split
operation is to replace a cluster by two children clusters that are
merged to form the cluster; the merge operation is to replace two
children clusters by their parent cluster; the individual attribution
adjustment is to change the placement of a subtree.

K-means Post-Refinement. The downside of hierarchical ag-
glomerative clustering is that themerging criterion cares only about
the entire optimality, but not single-sample optimality, i.e., samples
may not be assigned to their closest cluster. Moreover, hierarchical
agglomerative clustering considers only the cluster average dis-
tance. A small cluster might be close to some instances of a large
one, but with large average distance, the small cluster cannot be
merged.

To mitigate these limitations while reducing the number of clus-
ters, we conduct K-means clustering [17] for post-refinement. In
K-means, first, we generate 𝑘 initial “means” from random sampling
from the dataset. Then, in each iteration, we execute the follow-
ing two steps: (1) assign each sample to the closest cluster by the

Euclidean distance; (2) recalculate the new cluster means from the
new sample assignments. The algorithm terminates when reaching
convergence, i.e., no cluster attribution changes.

Our approach uses hierarchical agglomerative clustering as the
initialization of K-means clustering, and then executes the itera-
tion routine of K-means until convergence. We also consistently
remove empty clusters at the end of each iteration routine. Com-
pared to pure hierarchical agglomerative clustering, K-means post-
refinement strictly guarantees that every sample is assigned to
its nearest cluster, i.e., the assignment brings sample-wise opti-
mum. Additionally, the removal of empty clusters reduces the num-
ber of clusters. Compared to pure K-means clustering, our com-
bined clustering algorithm is deterministic. Note that K-means
post-refinement converges fast. For our 3, 664 test steps, K-means
post-refinement on average runs 6.369 iterations. Each iteration
costs only 5 seconds.

Preserving Manual Adjustment Availability. Given that K-
means post-refinement destroys the tree structure of hierarchical
agglomerative clustering results, we recover, or more precisely,
reconstruct the tree structure using the following three steps: (1) run
“local” hierarchical agglomerative clustering inside each cluster,
yielding a cluster hierarchical binary tree for each cluster; (2) run
“global” hierarchical agglomerative clustering where each cluster
is viewed as a single data point; the clustering finally merges all
clusters to a single one; (3) concatenate the “local” hierarchical
tree of each cluster to the “global” hierarchical tree. Note that the
leaf nodes of the “global” tree and the root nodes of the “local”
trees represent the same set of clusters, and thus the concatenation
is straightforward. With the tree structure, we support manual
adjustments including cluster splitting, merging, and individual
attribution adjustment on the K-means post-refined results.

4.5 Summary
Combining these preceding techniques forms our approach Clus-
tep and Clustep+. Clustep uses retrained word2vec word embed-
dings with our proposed RWMD-based metric and then applies
hierarchical agglomerative clustering. Clustep+ further applies
K-means post-refinement to reduce the number of clusters. At the
expense, Clustep+ may sacrifice some degree of global optimum,
i.e., yielding worse cluster accuracy.

Some variants of the approach are also available and evalu-
ated in §6. RNNEmbed uses word embeddings from an RNN lan-
guage model and measures the test step distance with RWMD.
RNNHidden uses the sentence embeddings from the RNN lan-
guage model, and measures the Euclidean distance as the test step
distance. TFIDF uses TF-IDF based vectorization with hierarchical
agglomerative clustering. IDFEmbed uses word embeddings from
Clustep, additionally weighted by IDF. We also evaluate the corre-
sponding K-means post-refinement version for RNNEmbed and
IDFEmbed, and they are denoted as RNNEmbed+ and IDFEm-
bed+, respectively. Finally, Dedup is the baseline approach in §6,
where two test steps are clustered together if and only if both fields
of these test steps are exactly the same after preprocessing.

Table 2 summarizes all these approaches and variants.
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Table 2: Overview of approaches and their techniques. Clustep and Clustep+ are our main approach.

Approach Pre- Embedding Measurement Clustering
processing Word2vec RNN TF IDF Euclidean RWMD Agglo. K-means

Baseline Dedup ✓

TFIDF ✓ ✓ ✓ ✓ ✓
IDFEmbed ✓ ✓ ✓ ✓ ✓

Approach IDFEmbed+ ✓ ✓ ✓ ✓ ✓ ✓
Variants RNNEmbed ✓ ✓ ✓ ✓

RNNEmbed+ ✓ ✓ ✓ ✓ ✓
RNNHidden ✓ ✓ ✓ ✓

Main Approach Clustep ✓ ✓ ✓ ✓
Clustep+ ✓ ✓ ✓ ✓ ✓

Figure 3: The UI screenshot of Clustep.

5 IMPLEMENTATION
We implement our approach with a supporting tool named Clustep
mainly in Python. Critical modules such as clustering and distance
computation are written in C++ for acceleration. To enable manual
result adjustment, our tool also includes web-based UI using Django.
The tool has been integrated into the testing system deployed for
the WeChat testing practice.

Given an entire set of NL test cases, the tool produces the clus-
tering results of the test steps included in the test set. Based on
the clustering results, for each NL test case, the tool produces an
executable test case by the following two steps: (1) replace each test
step in the test case with the call of the test API method whose
corresponding cluster includes the test step; and (2) compose se-
quentially these test API method calls.

Runtime Cost. Except word embedding training, the pipeline
within the tool runs within 40 s on Intel Xeon E5-2650 CPU us-
ing a single core, including preprocessing, distance calculation,
and hierarchical agglomerative clustering. If we additionally use
K-means post-refinement, then the pipeline within the tool runs
within 300 s. The word embedding training takes 15min to reach
over 90% likelihood but it needs to be executed only once.

User Interface. The user interface screenshot is shown in Fig-
ure 3. The UI supports all aforementioned manual adjustments.
Besides, the UI recommends cluster candidates for adjustment, rec-
ommends cluster names, and shows the inner taxonomy of each
cluster. Further details are omitted due to the space limit.

6 EVALUATION
To assess our approach, we conduct an evaluation on a large-scale
test case dataset of WeChat, an industrial mobile app with over a
billion active users. In particular, we intend to answer the following
two main research questions:

• RQ1:How effectively can our approach improve over related
approaches?

• RQ2: How much does each of our techniques contribute to
the overall effectiveness achieved by our approach?

We first describe how we generate the clustering ground truth
from test API method implementations and then discuss the results
for addressing the preceding research questions.

6.1 Ground Truth Generation
We have the access to the test API method implementations for
the test steps used in our evaluation. The bottom part of Figure
1 shows an example. Before the work in this paper, to reduce the
number of test API methods and save maintenance cost, we merged
test API methods with similar implementations. As a close approxi-
mation, we extracted the function call sequences using Python’s
ast package, compared the sequence equivalence, and merged test
API methods with identical sequences. After that, we produced the
ground truth for clustering accuracy evaluation by putting all test
steps implemented by the same test API method to the same cluster.

We remark that the generated ground truth is more based on
implementation similarity of test steps than semantic similarity.
We generate ground truth from implementation similarity because
in this way, the test steps in the same ground truth cluster can
surely be implemented by a single test API method. Thus, the
criterion directly aligns with our goal of reducing test API methods
to implement.

6.2 Evaluation Metric
We evaluate the clustering accuracy using the F score on the test
steps with ground truth clusters. The F score (also called 𝐹1 score)
has wide applications in statistics, machine learning, and NLP [19,
30, 33]. The F score considers each pair of different test steps: if the
pair of test steps belongs to the same ground-truth cluster, and is
assigned to the same cluster, the pair is a true positive instance; if
the pair belongs to different ground-truth clusters, but is assigned
to the same cluster, the pair is a false positive instance; if the pair
belongs to the same ground-truth cluster, but is assigned to different
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Table 3: Comparison of clustering accuracy measured by F
score for both strict and loose settings. The highest numbers
for both settings are bolded. The baseline approach is Dedup.
In the strict setting, the number of clusters is required to be
fewer or equal to 600. In the loose setting, there is no limit
on the number of clusters. Note that Dedup does not support
adjustment on the number of clusters.

Approach Strict Setting Loose Setting
Best F Score # Cls. of Best Best F Score # Cls. of Best

Baseline Dedup / / 45.35% 1, 719
TFIDF 14.44% 590 68.28% 1, 320

IDFEmbed 65.50% 570 79.43% 1, 310
Approach IDFEmbed+ 67.20% 567 83.22% 1, 241
Variants RNNEmbed 50.57% 600 80.61% 1, 160

RNNEmbed+ 65.08% 440 82.40% 863
RNNHidden 35.27% 600 51.64% 790

Main Clustep 80.87% 600 83.43% 1, 090
Approach Clustep+ 81.55% 586 82.86% 1, 345
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Figure 4: Clustering accuracy (measured by F score) with re-
spect to the number of clusters. Ourmain approach, Clustep
and Clustep+, is shown in the bolded blue dashed line and
bolded blue solid line, respectively. The black point repre-
sents the baseline approach (Dedup). All other lines repre-
sent the approach variants. In the middle, the blue vertical
line labels the constraint 600 on the number of clusters sep-
arating the strict and loose settings.

clusters, the pair is a false negative instance; if the pair belongs to
different ground-truth clusters, and is assigned to different clusters,
the pair is a true negative instance. With 𝑇𝑃 , 𝐹𝑃 , 𝐹𝑁 , 𝑇𝑁 used to
denote the number of these instances, respectively, from 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

and 𝑟𝑒𝑐𝑎𝑙𝑙 , the F score is defined as
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 := 𝑇𝑃/(𝑇𝑃 + 𝐹𝑃), 𝑟𝑒𝑐𝑎𝑙𝑙 := 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁 ),
𝐹 := 2 ∗ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙/(𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙).

Easily seen, the F score lies in range [0, 1]. A larger F score indicates
better clustering quality.

6.3 Evaluation Setup
We conduct our evaluation on the dataset from our large industrial
mobile app WeChat, as mentioned earlier (§3). All approaches are

evaluated using the F score. Except for the baseline, all evaluated
approaches have two adjustable parameters: the number of clusters
and adjustable weights for theMain Executor field (𝑤ME). Following
a suggested practice [2], we do a random search on these parameters
and select the best parameters for each approach.

Note that these approaches are all deterministic. These approaches,
even including the ones with K-means post-refinement, have no
randomness because of deterministic initialization from hierarchi-
cal agglomerative clustering. Thus, for each setting, the approach
needs to run only once.

We consider two evaluation settings: strict setting and loose set-
ting. In the strict setting, we require the number of clusters to be
smaller or equal to 600, and consider only clustering results satisfy-
ing this constraint. In the loose setting, we discard this constraint.
A smaller number of clusters mean fewer test API methods to be
implemented, while a larger number of clusters may have better
cluster accuracy. The threshold 600 is determined empirically from
the number of clusters (1, 719) achieved by the baselineDedup, and
the total number of test steps (3, 664). Since the clustering quality
is dependent on the adjustable number of clusters, in the strict
setting, for each approach, we let the number of clusters be 10, 20,
..., 590, 600 after agglomerative hierarchical clustering. For some
approaches, we then run K-means post-refinement for each of these
numbers of clusters. After that, we measure the best F score of each
approach for all these numbers of clusters. In the loose setting, we
remove the constraint on the number of clusters, and measure the
best F score similarly. Table 3 shows the detailed results for both
settings.

RQ1: How effectively can our approach improve
over related approaches?
Strict Setting.The left part of Table 3 shows the results. The F score,
as mentioned earlier, is themeasurement of clustering accuracy. Our
Clustep+ approach is designed for this setting. The table shows that
our approach (achieving 81.55%) is substantially better than other
variants (at best 67.20%), as expected. Especially, when compared
with the baseline, our approach’s F score is 79.8% better (81.55% vs
45.35%) and the number of clusters is 65.9% fewer (586 vs 1, 719). The
main reason for the improvement is the effective reduction on the
number of clusters from K-means post-refinement and the strength
of RWMD-based measurement combined with word embeddings.

Loose Setting. The best clustering accuracy is shown in the
right part of Table 3. Our Clustep approach is designed for this set-
ting. The table shows that our approach achieves the best clustering
accuracy (83.43%), being much better than the baseline (45.35%).
Other variants also achieve good clustering accuracy, such as 83.22%
achieved by IDFEmbed+ and 82.40% achieved by RNNEmbed+.
We further discuss the implication of this result in RQ2.

In both settings, our approach, includingClustep andClustep+,
achieves the best clustering accuracy, and is substantially better
than the baseline approach Dedup.

Time Savings. We estimate the actual time savings using our
approach. From actual practice, we find that it takes an experienced
human tester 5min to write a test APImethod, and it takes a familiar
user of our tool 1min to adjust an incorrect cluster. Therefore, with-
out our tool, transforming test steps to test API methods takes about
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18 000min (3, 664 test steps ×5min); while with our tool, transform-
ing test steps to test API methods takes about 3000min (586 test
steps ×5min + (586 × 81.55%) incorrect clusters ×1min). With 10
human testers, the whole transforming process is estimated to last
only 5 hr instead of 30 hr—our tool saves enormous time.

Besides, after clustering, we need to implement much fewer test
API methods. There are 9.105 lines of code on average for each
test API method. Now we need to implement only 586 test API
methods instead of 3, 664, and thus the estimated saved lines of
code are 28, 000. Also, fewer lines of code substantially save the
maintenance cost.

RQ2: How much does each of our techniques
contribute to the overall effectiveness achieved
by our approach?
Clustep and Clustep+ use four major techniques: domain-specific
preprocessing, word2vec word embedding training, RWMD-based
step distance measurement, and hierarchical agglomerative clus-
tering with K-means post-refinement. In Figure 4, to analyze the
effect of each technique, we plot the clustering accuracy of different
approaches and the variants with respect to the number of clusters.

Domain-Specific Preprocessing.All the evaluated approaches
use domain-specific preprocessing, including the baseline. Before
preprocessing, all 3, 000+ test steps are different in at least one field,
and cannot be clustered together. With the preprocessing including
low-frequency word removal, domain phrase concatenation, and
stop word removal, even simple baseline Dedup reaches 45.35%
F score and removes over half of clusters.

WordEmbeddingTraining andRWMD-BasedDistance. Ex-
cept Dedup, TFIDF, and RNNHidden, other approach variants
and our main approach all use word embeddings. Among them,
IDFEmbed, IDFEmbed+, Clustep, and Clustep+ use word2vec
trained word embeddings combined with RWMD-based distance
measurement. RNNEmbed and RNNEmbed+ use RNN trained
word embeddings with RWMD-based distance measurement.

From Table 3 and Figure 4, we find that word embeddings and
RWMD-based distance jointly improve the clustering accuracy and
reduce the number of clusters substantially. Under the loose set-
ting, the approaches with word embeddings and RWMD-based dis-
tance measurement achieve clustering accuracy of 79.43%− 83.43%.
However, without these techniques, Dedup and TFIDF have only
45.35% and 68.28% clustering accuracy. RNNHidden achieves only
51.64%. The gap between the variants with and without these tech-
niques is larger than 10%. Similar trends can be observed under the
strict setting.

The main reason is that word embeddings map semantically
similar words to similar embeddings [11, 13, 21] and the RWMD-
based distance measurement effectively measures the similarity
of test steps from the similarity of their word embeddings [11].
Therefore, semantically similar test steps are correctly clustered
together, unlike the baselineDedup, the variant TFIDF, or existing
approaches in the literature [31, 32]. These baseline and variants
treat distinct words as equally different ones. RNNHidden uses
sentence embeddings directly extracted from RNN neurons. This
approach is shown to be powerful in a large and diversified NLP
corpus [14, 16]. However, our test step corpus has small size and

Table 4: Ablation study for K-means post-refinement under
the strict setting. Column “+” shows the F score with K-
means post-refinement, and Column “-” shows the F score
without it.

Approach Variants - + Improvement
IDFEmbed/IDFEmbed+ 65.60% 67.20% +1.70%

RNNEmbed/RNNEmbed+ 50.57% 65.08% +14.51%
Clustep/Clustep+ 80.87% 81.55% +0.68%

short document length. These characteristics pose difficulties in
learning sentence embeddings from RNN.

K-Means Post-Refinement. K-means post-refinement is par-
ticularly proposed for the strict setting. Thus, we do ablation study
under this setting, and the results are shown in the left part of
Figure 4 and Table 4. In Figure 4, the left side of the vertical line
corresponds to the strict setting. We can observe that Clustep+ in
the blue solid line is substantially better than Clustep in the blue
dashed line under the same number of clusters. If we further reduce
the number of clusters from 600 to 400 or 200, the advantage of
K-means post-refinement becomes much more pronounced. For
example, with 400 clusters, Clustep has roughly only 35% F score
while Clustep+ achieves over 64%. In Table 4, each variant with
suffix “+” is the K-means post-refinement version of that without
“+”, so the pairs can be directly compared. K-means post-refinement,
as expected, improves the clustering accuracy for different variants
ranging from 0.68% to 14.51%. We note that sometimes the improve-
ments are small. The reason could be reaching the performance
limit of the current approach pipeline as increasing the number of
clusters cannot improve much (see Figure 4). Further analysis is
left to future work.

All these techniques contribute to the overall effectiveness. From
the preceding discussion, we rank the importance from high to
low as domain-specific preprocessing, word embeddings combined
with RWMD-based distance, and K-means post-refinement. On the
other hand, as indicated in Figure 4, the performance is in some
degree independent of how the word embeddings are trained (e.g.,
by word2vec in Clustep or by RNN in RNNEmbed), or how the
different keywords are weighted (e.g., equally-weighted inClustep
or IDF-weighted in IDFEmbed), because all these variants have
very similar performance.

7 DISCUSSION
In this section, we first present a study of failing causes for suggest-
ing future directions. We then discuss threats to validity.

7.1 Study of Failing Causes
Despite the satisfactory clustering results, there are still incorrect
clusters. We manually inspect the best clustering results under the
strict setting (𝐹 = 81.55% from Clustep+), and analyze the failing
causes of our approach. The incorrect cluster examples are shown
in Figure 5. We next summarize the four main causes of incorrect
clusters, and Figure 6 shows the frequency statistics of each cause.
The statistics of Figure 6 are calibrated from independent studies
of two researchers to assure soundness.
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No. Main Executor Test Description Pred. Label
1 User user chooses to agree 1
3 Complete User user chooses to agree 1
4 User user chooses not to agree 1
6 Complete User user chooses not to agree 1

(a)

No. Main Executor Test Description Pred. Label
1 User user chooses to confirm 2
2 Complete User user chooses to confirm 2
3 Auth. User user chooses to confirm 2
6 Simple User user chooses to confirm 2
7 Complete User feedback info. failed, go to 9 3

(b)

No. Main Executor Test Description Pred. Label
1 Auth. User user chooses “upload personal ID” 5
2 User user chooses to upload personal ID 5
3 User user chooses “upload personal ID picture” 5

(c)

Figure 5: Incorrect cluster examples for failing cause anal-
ysis. Each table corresponds to a ground truth cluster. Gray
rows showwrong samples. The “Pred. Label” shows the clus-
ter label predicted by our approach.

A (25)
34.7%

B (23)

31.9%

19.4% C (14)

D (10)

13.9%

Failing Causes Frequency Statistics

Figure 6: Failing cause statistics out of 72 incorrect clusters
from the 586 clusters in total. A, B, C, and D correspond to
those in §7. Each of the numbers in the parenthesis denotes
the number of clusters falling into each category.

A Independence between test API method implementation similarity
and test step semantic similarity. In Figure 5(b), the 7th row is a
test step that should be in the same ground truth cluster with
preceding rows but is assigned to another cluster. The row shares
little semantic similarity with preceding rows but their test API
method implementation is the same.

B Inappropriate handling of Main Executor difference. In Figure 5(b),
the gray row is different from others in the Main Executor field.
Those whose Main Executor is “Simple User” correspond to a
special test API method, while all others correspond to the same
but another test API method.

C Bad word embeddings for scarce words. When the words are rare
in the context, their word embeddings cannot be well trained,
and thus are close to their initialization values and are similar
to common words. Thus, test steps containing these words are
likely to be clustered to other common clusters.

D Ignorance of difference between few important words. In Figure
5(a), the rows containing “not” are wrongly clustered. In Figure
5(c), the erroneous last row differs from others in the last word

“picture”. The reason is that the difference in a single word may
be diluted when all other words are similar.

The most common causes, A and B, reveal that professional
knowledge should be provided, e.g., when the Main Executor mat-
ters and when the implementation can be the same. Without this
knowledge, even human cannot decide correctly. These two causes
account for roughly 66% of incorrect clusters. This large portion
reflects that the ambiguity and language inconsistency of NL test
steps in industrial apps is the major cause of failure. As a solution,
we propose to require the human test step writers to explicitly tag
the specific objects that have context-specific meanings. We have
not collected large enough data to study the effectiveness of this
new principle, and we leave the study as future work.

Cause C calls for better word embedding training algorithms,
especially learning accurate word embeddings when the dataset
size is limited. For cause D, we have tried some heuristics such as
manually labeling some special words as keywords such as “not”,
“fail”, “logout”, and “wrong”. However, we find that in many other
cases, these words should be ignored instead. For example, “user
chooses not to input password” has the same test API method
as “user chooses to ignore password input”. As a result, without
considering the context, such heuristics bring even worse results,
reaching only 54.5% F score. We believe that better context handling
techniques, or a more regularized writing style of test steps, could
be helpful to handle cause D.

7.2 Threats to Validity
The preceding study shows an internal threat: the implementation
similarity of test API methods may be different from the semantic
similarity of test steps. However, our high clustering accuracy indi-
cates that these cases are relatively rare. Another threat comes from
the incremental gains from K-means post-refinement in some cases.
We plan to conduct a further study on K-means post-refinement in
future work.

A major external threat is related to whether the proposed ap-
proach and the evaluation can be generalized well to other similar
scenarios. The approach itself is general enough for any NL test
steps sharing the structures and characteristics shown in §3, and
existing studies on NL test cases [32] indicate that these charac-
teristics are not rare. However, it is currently hard to evaluate the
approach for these similar scenarios since few test case datasets are
publicly available.

8 CONCLUSION
In this paper, we have proposed an approach with multiple novel
techniques to cluster similar NL test steps together. The approach
can cluster the test steps with high accuracy and reduce the number
of clusters to substantially reduce the downstream manual effort.
We have evaluated the effectiveness of the approach on test cases of
WeChat, a large industrial app, and have integrated the approach’s
implementation into the testing system for the app. In future work,
we plan to achieve higher accuracy and extend our approach to
handle more-unstructured test cases.



Clustering Test Steps in Natural Language toward Automating Test Automation ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

REFERENCES
[1] Nadim Asif, Faisal Shahzad, Najia Saher, and Waseem Nazar. 2009. Clustering

the source code. WSEAS Transactions on Computers 8 (12 2009), 1835–1844.
[2] James Bergstra and Yoshua Bengio. 2012. Random search for hyper-parameter

optimization. Journal of Machine Learning Research 13, 10 (2012), 281–305. http:
//jmlr.org/papers/v13/bergstra12a.html

[3] Ravishankar Boddu, Lan Guo, Supratik Mukhopadhyay, and Bojan Cukic. 2004.
RETNA: From requirements to testing in a natural way. In Proceedings of the
2004 12th IEEE International Requirements Engineering Conference (RE ’04) (Kyoto,
Japan). IEEE, 262–271.

[4] Cucumber. 2019. Cucumber. https://cucumber.io. Accessed: 05-03-2020.
[5] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:

Pre-training of deep bidirectional transformers for language understanding. In
Proceedings of the 2019 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 1 (Long
and Short Papers) (NAACL-HLT ’19) (Minneapolis, Minnesota). Association for
Computational Linguistics, 4171–4186. https://doi.org/10.18653/v1/N19-1423

[6] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. 1996. A density-
based algorithm for discovering clusters in large spatial databases with noise. In
Proceedings of the 1996 2nd International Conference on Knowledge Discovery and
Data Mining (KDD ’96) (Portland, Oregon). AAAI Press, 226–231.

[7] Alessandro Fantechi, Stefania Gnesi, Giuseppe Lami, and Alessandro Maccari.
2003. Applications of linguistic techniques for use case analysis. Requirements
Engineering 8, 3 (2003), 161–170.

[8] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-termmemory. Neural
Computation 9, 8 (Nov. 1997), 1735–1780. https://doi.org/10.1162/neco.1997.9.8.
1735

[9] Anil K Jain, M Narasimha Murty, and Patrick J Flynn. 1999. Data clustering: A
review. ACM Computing Surveys (CSUR) 31, 3 (1999), 264–323.

[10] Ian T Jolliffe. 1993. Principal component analysis: A beginner’s guide—II. Pitfalls,
myths and extensions. Weather 48, 8 (1993), 246–253. https://doi.org/10.1002/j.
1477-8696.1993.tb05899.x

[11] Matt Kusner, Yu Sun, Nicholas Kolkin, and Kilian Weinberger. 2015. From word
embeddings to document distances. In Proceedings of Machine Learning Research
(Lille, France), Francis Bach and David Blei (Eds.), Vol. 37. PMLR, 957–966. http:
//proceedings.mlr.press/v37/kusnerb15.html

[12] Siwei Lai, Liheng Xu, Kang Liu, and Jun Zhao. 2015. Recurrent convolutional neu-
ral networks for text classification. In Proceedings of the 2015 29th AAAI Conference
on Artificial Intelligence (AAAI ’15) (Austin, Texas). AAAI Press, 2267–2273.

[13] Quoc Le and Tomas Mikolov. 2014. Distributed representations of sentences and
documents. In Proceedings of Machine Learning Research (Bejing, China), Eric P.
Xing and Tony Jebara (Eds.), Vol. 32. PMLR, 1188–1196. http://proceedings.mlr.
press/v32/le14.html

[14] Zachary C Lipton, John Berkowitz, and Charles Elkan. 2015. A critical review of
recurrent neural networks for sequence learning. CoRR abs/1506.00019 (2015).
arXiv:1506.00019 http://arxiv.org/abs/1506.00019

[15] Greg Little and Robert C. Miller. 2006. Translating keyword commands into
executable code. In Proceedings of the 2006 19th Annual ACM Symposium on User
Interface Software and Technology (Montreux, Switzerland) (UIST ’06). Association
for Computing Machinery, 135–144. https://doi.org/10.1145/1166253.1166275

[16] Pengfei Liu, Xipeng Qiu, and Xuanjing Huang. 2016. Recurrent neural network
for text classification with multi-task learning. In Proceedings of the 2016 25th
International Joint Conference on Artificial Intelligence (New York, New York)
(IJCAI ’16). AAAI Press, 2873–2879.

[17] Stuart Lloyd. 1982. Least squares quantization in PCM. IEEE Transactions on In-
formation Theory 28, 2 (1982), 129–137. https://doi.org/10.1109/TIT.1982.1056489

[18] Jalal Mahmud and Tessa Lau. 2010. Lowering the barriers to website testing with
CoTester. In Proceedings of the 2010 15th International Conference on Intelligent User
Interfaces (Hong Kong, China) (IUI ’10). Association for Computing Machinery,
169–178. https://doi.org/10.1145/1719970.1719994

[19] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze. 2008. In-
troduction to information retrieval. Cambridge University Press, New York, New
York.

[20] Mitchell P. Marcus, Beatrice Santorini, and Mary AnnMarcinkiewicz. 1993. Build-
ing a large annotated corpus of English: The penn treebank. Computational
Linguistics 19, 2 (1993), 313–330. https://www.aclweb.org/anthology/J93-2004

[21] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013.
Distributed representations of words and phrases and their compositionality.
In Proceedings of the 2013 26th International Conference on Neural Information
Processing Systems (NIPS ’13) (Lake Tahoe, Nevada), Vol. 2. Curran Associates
Inc., 3111–3119.

[22] Yuanyuan Qiu, Hongzheng Li, Shen Li, Yingdi Jiang, Renfen Hu, and Lijiao Yang.
2018. Revisiting correlations between intrinsic and extrinsic evaluations of word
embeddings. In Proceedings of the 2018 17th Chinese Computational Linguistics
and Natural Language Processing Based on Naturally Annotated Big Data (NLP-
NABD ’18) (Changsha, China), Maosong Sun, Ting Liu, Xiaojie Wang, Zhiyuan
Liu, and Yang Liu (Eds.). Springer International Publishing, 209–221.

[23] Anand Rajaraman and Jeffrey David Ullman. 2011. Mining of massive datasets.
Cambridge University Press, Cambridge, UK.

[24] Carl Edward Rasmussen. 1999. The infinite Gaussian mixture model. In Proceed-
ings of the 1999 12th Advances in Neural Information Processing Systems (NIPS ’99)
(Denver, Colorado). MIT Press, 554–560.

[25] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. 1986. Learning
representations by back-propagating errors. Nature 323, 6088 (1986), 533–536.

[26] Mark Shtern and Vassilios Tzerpos. 2012. Clustering methodologies for software
engineering. Advances in Software Engineering 2012, Article 1 (Jan. 2012). https:
//doi.org/10.1155/2012/792024

[27] A. Sinha, S. M. S. Jr., and A. Paradkar. 2010. Text2Test: Automated inspection of
natural language use cases. In Proceedings of the 2010 3rd International Conference
on Software Testing, Verification and Validation (ICST ’10) (Paris, France). IEEE,
155–164. https://doi.org/10.1109/ICST.2010.19

[28] A. Sinha, A. Paradkar, P. Kumanan, and B. Boguraev. 2009. A linguistic analysis en-
gine for natural language use case description and its application to dependability
analysis in industrial use cases. In Proceedings of the 2009 IEEE/IFIP International
Conference on Dependable Systems Networks (DSN ’09) (Lisbon, Portugal). IEEE,
327–336. https://doi.org/10.1109/DSN.2009.5270320

[29] Peter HA Sneath and Robert R Sokal. 1973. Numerical taxonomy: The principles
and practice of numerical classification. W. H. Freeman, San Francisco, California.

[30] Alaa Tharwat. 2018. Classification assessment methods. Applied Computing and
Informatics (2018). https://doi.org/10.1016/j.aci.2018.08.003

[31] S. Thummalapenta, P. Devaki, S. Sinha, S. Chandra, S. Gnanasundaram, D. D.
Nagaraj, S. Kumar, and S. Kumar. 2013. Efficient and change-resilient test au-
tomation: An industrial case study. In Proceedings of the 2013 35th International
Conference on Software Engineering (ICSE ’13) (San Francisco, California). IEEE,
1002–1011. https://doi.org/10.1109/ICSE.2013.6606650

[32] S. Thummalapenta, S. Sinha, N. Singhania, and S. Chandra. 2012. Automating test
automation. In Proceedings of the 2012 34th International Conference on Software
Engineering (ICSE ’12) (Zurich, Switzerland). IEEE, 881–891. https://doi.org/10.
1109/ICSE.2012.6227131

[33] Erik F. Tjong Kim Sang and Fien De Meulder. 2003. Introduction to the CoNLL-
2003 shared task: Language-independent named entity recognition. In Proceedings
of the 2003 7th Conference on Natural Language Learning at HLT-NAACL 2003
(CoNLL ’03) (Edmonton, Canada), Vol. 4. Association for Computational Linguis-
tics, USA, 142–147. https://doi.org/10.3115/1119176.1119195

[34] Kristina Toutanova, Dan Klein, Christopher D. Manning, and Yoram Singer. 2003.
Feature-rich part-of-speech tagging with a cyclic dependency network. In Pro-
ceedings of the 2003 Conference of the North American Chapter of the Association for
Computational Linguistics on Human Language Technology (NAACL ’03) (Edmon-
ton, Canada), Vol. 1. Association for Computational Linguistics, USA, 173–180.
https://doi.org/10.3115/1073445.1073478

[35] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, undefinedukasz Kaiser, and Illia Polosukhin. 2017. Atten-
tion is all you need. In Proceedings of the 2017 31st International Conference on
Neural Information Processing Systems (NIPS ’17) (Long Beach, California). Curran
Associates Inc., 6000–6010.

[36] Carlos Videira, David Ferreira, and A Silva. 2006. Patterns and parsing techniques
for requirements specification. In Proceedings of the 2006 1st Iberian Conference on
Information Systems and Technologies (CISTI ’06) (Ofir, Portugal), Vol. 2. 375–390.

[37] Chunhui Wang, Fabrizio Pastore, Arda Goknil, and Lionel C. Briand. 2019.
Automatic generation of system test cases from use case specifications: An
NLP-based approach. CoRR abs/1907.08490 (2019). arXiv:1907.08490 http:
//arxiv.org/abs/1907.08490

http://jmlr.org/papers/v13/bergstra12a.html
http://jmlr.org/papers/v13/bergstra12a.html
https://cucumber.io
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1002/j.1477-8696.1993.tb05899.x
https://doi.org/10.1002/j.1477-8696.1993.tb05899.x
http://proceedings.mlr.press/v37/kusnerb15.html
http://proceedings.mlr.press/v37/kusnerb15.html
http://proceedings.mlr.press/v32/le14.html
http://proceedings.mlr.press/v32/le14.html
https://arxiv.org/abs/1506.00019
http://arxiv.org/abs/1506.00019
https://doi.org/10.1145/1166253.1166275
https://doi.org/10.1109/TIT.1982.1056489
https://doi.org/10.1145/1719970.1719994
https://www.aclweb.org/anthology/J93-2004
https://doi.org/10.1155/2012/792024
https://doi.org/10.1155/2012/792024
https://doi.org/10.1109/ICST.2010.19
https://doi.org/10.1109/DSN.2009.5270320
https://doi.org/10.1016/j.aci.2018.08.003
https://doi.org/10.1109/ICSE.2013.6606650
https://doi.org/10.1109/ICSE.2012.6227131
https://doi.org/10.1109/ICSE.2012.6227131
https://doi.org/10.3115/1119176.1119195
https://doi.org/10.3115/1073445.1073478
https://arxiv.org/abs/1907.08490
http://arxiv.org/abs/1907.08490
http://arxiv.org/abs/1907.08490

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Approach
	4.1 Preprocessing
	4.2 Training of Word Embeddings
	4.3 Measurement of Test-Step Similarity
	4.4 Hierarchical Agglomerative Clustering with K-means Post-Refinement
	4.5 Summary

	5 Implementation
	6 Evaluation
	6.1 Ground Truth Generation
	6.2 Evaluation Metric
	6.3 Evaluation Setup

	7 Discussion
	7.1 Study of Failing Causes
	7.2 Threats to Validity

	8 Conclusion
	References

