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Introduction

We formally extend core-stability from co-operative game theory

to define fairness in federated learning.

We show core-stability exists under some conditions proved with

a fixed point formulation.
Linear / logistic regression: Hold

Smooth Neural Nets (DNN): approximate core-stable within a local

neighborhood

We design an effective FL protocol CoreFed to realize core-stable

training when possible.

On three datasets, CoreFed achieves core-stable fairness, while

maintaining similar utility with the standard FedAvg protocol.

Federated Learning (FL)

A distributive Machine Learning framework – set of federating agents train a joint classifier

without sharing data.

Widely applied in many applications, e.g., self-driving cars and medical imaging.

Different clients in FL may have heterogeneous data. How to train a centralized model that is

fair to all agents?

FL as Public Decision Making

Find a model that performs well on all types of data distributions (Representational
Parity).
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Make a decision (choose a model c) that is fair to all agents deriving utility

Some Existing Fairness Notions

Egalitarian Fairness[Donahue, Kleinberg’21]: Find c such that

maxcmini∈[n]ui(c,Di).
Equity Based Fairness [Donahue, Kleinberg’21]: Find c such that
ui(c,Di)

ni
= ui′(c,Di′)

ni′
∀i, i′.

Problem: Final outcome will be tailored towards the agent who is hard to

satisfy, i.e., is susceptible to noisy data from particular agents.

Aggregator

c ∈ argmaxcmini∈[n]ui(c,Di) or ui(c,Di) = ui′(c,Di′) ∀i, i′
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Final c will be tailored towards to D2

Core-Stability

Choose c that maximizes
∏

i∈[n] ui(c,Di) (can be implemented via SGD)

Proportionality Pareto-Optimality

Proportionality: ui(c,Di) ≥ ui(c′,Di)
n ∀c′

Pareto-Optimality: ∃ no c′ s.t. ui(c,Di) ≥ ui(c′,Di) with at least one strict

inequality.

Core-Stability: No set of agents have “significant incentive” to break and train a

classifier with their own data ,i.e., ∃ no S ⊆ [n], and no c′ such that
|S|
n · ui(c′,Di) ≥ ui(c,Di) ∀i ∈ S with at least one strict inequality.

Core-Stability generalizes both Proportionality (S = {i} for each i) and
Pareto-Optimality (S = [n]).

Distributed Algorithm

Input: Number of clients K , number of rounds T , epochs E, learning rate η.

Output: Model weights θT

For t = 0, 1, · · · , T − 1,
Server selects a subset of K devices St

Server sends weights θt to all selected devices

Each selected device s ∈ St updates θt for E epochs of SGD with learning rate η to obtain new weights θ̄t
s

Each selected device s ∈ St computes

∆θt
s = θ̄t

s − θt,

Lt
s = 1
|Ds|

|Ds|∑
i=1

`(fθt(x(i)
s ), y(i)

s )

where Ds = {(x(i)
s , y

(i)
s ) : 1 ≤ i ≤ |Ds|} is the training dataset on device s

Each selected device s ∈ St sends ∆θs and Ls back to the server

Server updates θt+1 following

θt+1 ← θt + 1
|St|

∑
s∈St

∆θt
s

Ms − Lt
s (weighted update)

.

Experimental Evaluation

1. Main baseline: FedAvg CoreFed achieves core-stable fairness compared

with FedAvg while maintaining similar utility.

2. “U(Average)”: average utility, “U(Multi)”: multiplicative utility of the trained

global model CoreFed achieves higher overall utilities, especially for the

multiplicative case since FedAvg favors the average case in general.

Table 1. Comparison of utility for each agent trained with CORE-FED and FedAvg. We see that
∑

i∈[n]
ui(θ′,Di)
ui(θ∗,Di) < n

holds, where θ′ denotes the weights of shared model trained by FedAvg and θ∗ by CORE-FED.

Dataset Method Agent 0 Agent 1 Agent 2 U(Average) U(Multi)
∑

i∈[n]
ui(θ′,Di)
ui(θ∗,Di)

Adult
FedAvg 2.59 0.77 1.46 1.61 2.91

2.80 (<3)
CoreFed 2.62 0.90 1.53 1.68 3.61

MNIST
FedAvg 0.34 0.29 0.92 0.52 0.091

2.66 (<3)
CoreFed 0.36 0.41 0.91 0.56 0.13

CIFAR-10
FedAvg 0.63 1.40 0.51 0.84 0.45

2.62 (<3)
CoreFed 0.73 1.35 0.71 0.93 0.70

Table 2. Comparison of utility for each agent trained with CORE-FED and FedAvg on CIFAR-10 with network

VGG-11.

Method Agent 0 Agent 1 Agent 2 U(Average) U(Multi)
∑

i∈[n]
ui(θ′,Di)
ui(θ∗,Di)

FedAvg 0.25 3.25 3.46 2.35 2.89
2.25 (<3)

CoreFed 1.63 3.17 3.32 2.71 17.15

Table 3. Comparison of utility for each agent trained with CORE-FED and FedAvg on CIFAR-10 in the scenario that

some agents have data of low quality (i.e., with added Gaussian noise). The variance of added Gaussian noise is

0.0,0.5,1.0 for agent 0,1,2, respectively.

Method Agent 0 Agent 1 Agent 2 U(Average) U(Multi)
∑

i∈[n]
ui(θ′,Di)
ui(θ∗,Di)

FedAvg 3.28 3.30 1.42 2.67 15.37
2.74 (<3)

CoreFed 3.26 3.27 1.95 2.83 20.79
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