

Certifying Some Distributional Fairness with Subpopulation Decomposition Mintong Kang*¹, Linyi Li*¹, Maurice Weber², Yang Liu³, Ce Zhang², Bo Li¹

¹University of Illinois Urbana-Champaign ²ETH Zürich ³University of California, Santa Cruz

Experimental Evaluation

Decompose according to sensitve attribute X_s and label Y

arxiv.org/abs/ 2205.15494

$$
\mathcal{P} = \sum_{s=1}^{S} \sum_{y=1}^{C} \Pr_{\mathcal{P}}[X_s = s, Y = y] \cdot \mathcal{P}_{s,y},
$$

$$
\mathcal{Q} = \sum_{s=1}^{S} \sum_{y=1}^{C} \Pr_{\mathcal{Q}}[X_s = s, Y = y] \cdot \mathcal{Q}_{s,y}
$$

Pr (X,\overline{Y}) ~Q $Y = y | X_s = s_a] = \Pr_{(x, y)}$ X,\overline{Y} \sim Q $Y = y | X_s = s_b]$, $\forall y, s_a, s_b$ \triangleright Sensitive attribute X_s has no effect on label Y at population level

Distance constraint

 $dist(P, Q) \leq \rho \Leftrightarrow$ $1-\rho^2$ > \sum |Pr $s = 1$ $\mathcal{S}_{0}^{(n)}$ $y=1$ $\mathcal C$ \mathcal{P} $X_s = s, Y = y$ Pr \overline{Q} $X_{\scriptscriptstyle \mathcal{S}} = {\scriptscriptstyle \mathcal{S}} , Y = {\scriptscriptstyle \mathcal{Y}}] \bigl(\, 1 - \mathop{\rm dist}\nolimits\bigl(\mathcal{P}_{\scriptscriptstyle \mathcal{S}, \mathcal{Y}} , \mathcal{Q}_{\scriptscriptstyle \mathcal{S}, \mathcal{Y}} \bigr) \bigr)$ 2 ≤ 0 • Such fair distribution admits unconstrained parameterization: Pr

Pr \mathcal{P} $X_{\scriptscriptstyle \mathcal{S}}= \scriptscriptstyle \mathcal{S},\, Y= \mathcal{Y}}]$, $\mathbb{E}_{(X,Y)\sim \mathcal{P}_{\scriptscriptstyle \mathcal{S},\mathcal{Y}}}[\ell(h_{\theta}(X), Y)]$

 $X_s = s, Y = y$, Pr $\Pr_{\mathcal{Q}}[X_{\mathcal{S}}=s, Y=y]$, $\mathbb{E}_{(X,Y)\sim \mathcal{P}_{\mathcal{S},\mathcal{Y}}}[\ell(h_{\boldsymbol{\theta}}(X), Y)]$

• **Variables to optimize**: dist $(p_{s,y}, Q_{s,y})^2$ (subject to distance constraints) • **Key variable to upper bound**: $\mathbb{E}_{(X,Y)\sim \mathcal{Q}_{S,Y}}[\ell(h_{\theta}(X), Y)]$ Ø Plug in Gramian bound [Weber et al, ICML 2022] to get upper bound Optimize the upper bound with low-dimensional convex optimization \triangleright Bypass non-convexity with variable transforms 4. Maximization over all grids \Rightarrow **Output:** Certification of fairness!

Fair Distribution Constraint

Consider discrete sensitive attribute X_s and label Y fine fair distribution to be distribution with fair se rate:

$$
\Pr_{(X,Y)\sim Q}[Y = y | X_S = s] = k_s r_y \quad (k_s, r_y \in [0,1])
$$

Theoretical Observations

Certification Procedure (Informal, Theorem 3)

Input: subpopulation statistics & subpopulation level constraints

- ML systems may be biased towards particular groups
- Existing approaches mainly **evaluate** fairness

Ø Important & challenging to rigorously **certify** fairness, which is our focus

ETHzürich SANTA CAUT

• *For sensitive shifting setting (no distribution shift within each subpopulation, only portions among subpopulations shifted), we have simpler fairness certification procedure with tighter*

• *Framework amenable to finite sampling error: with high-confidence intervals of statistics, we provide high-confidence probabilistic certification.*

• *Framework support any population loss function, e.g., can bound group risk discrepancy* • *Our fairness notion implies demographic parity (DP) and equalized odds (EO)*

especially in

sensitive shifting

setting Soundness: gray points always below black curve

Ø **Always sound**

Introduction

Core Methodology: Subpopulation Decomposition

where

More results & ablation studies in our paper!

 x -axis: distance threshold ρ Figure 2: Certified fairness with general shifting. Grey points are results on generated distributions (Q) and the -axis: expected loss black line is our fairness certificate based on Thm. 3. We observe that our fairness certificate is non-trivial.

Main Contributions:

- **We formulate** certified fairness problem of an end-toend ML model
- **We propose an effective fairness certification framework** that **for the first time** solves this certified fairness problem by subpopulation decomposition
- **We evaluate** our framework on **6** real-world datasets to show its tightness and scalability