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Decompose according to sensitve attribute X! and 
label Y
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Distance constraint
dist 𝒫, 𝒬 ≤ 𝜌 ⟺

1− 𝜌! −4
"#$

%

4
&#$

'

Pr
𝒫
𝑋" = 𝑠, 𝑌 = 𝑦 Pr

𝒬
𝑋" = 𝑠, 𝑌 = 𝑦 1 − dist 𝒫",&, 𝒬",&

! ≤ 0

Decomposed to constraints on 𝒫",&, 𝒬",&
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Equal to constraints on 
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Fair Distribution 
Constraint 

Fair Distribution Constraint
• Consider discrete sensitive attribute 𝑋" and label 𝑌
Define fair distribution to be distribution with fair
base rate:
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Ø Sensitive	attribute	𝑋" has	no	effect	on	label	𝑌
at	population	level

• Such fair distribution admits unconstrained 
parameterization:
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𝑌 = 𝑦 𝑋" = 𝑠 = 𝑘"𝑟& (𝑘", 𝑟& ∈ [0,1])

Theoretical Observations

Certification Procedure (Informal, Theorem 3)
Input: subpopulation statistics & subpopulation level constraints
1. Query subpopulation statistics:

Pr
𝒫
𝑋" = 𝑠, 𝑌 = 𝑦 , 𝔼 =,> ∼𝒫),* ℓ ℎ@ 𝑋 , 𝑌

2. Divide 𝑘", 𝑟& ∈ [0,1] into grids
3. In each grid:
• Known quantities:
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• Variables to optimize: dist 𝒫&,-, 𝒬&,-
.

(subject to distance constraints)
• Key variable to upper bound: 𝔼 !,# ∼𝒬!,# ℓ ℎ, 𝑋 , 𝑌
Ø Plug in Gramian bound [Weber et al, ICML 2022] to get upper bound
Ø Optimize the upper bound with low-dimensional convex optimization

Ø Bypass non-convexity with variable transforms
4. Maximization over all grids ⟹ Output: Certification of fairness!
Remarks:
• For sensitive shifting setting (no distribution shift within each subpopulation, only portions 

among subpopulations shifted), we have simpler fairness certification procedure with tighter
guarantees

• Framework amenable to finite sampling error: with high-confidence intervals of statistics, we 
provide high-confidence probabilistic certification.

• Framework support any population loss function, e.g., can bound group risk discrepancy
• Our fairness notion implies demographic parity (DP) and equalized odds (EO)

For sensitive shifting setting:

For general shifting setting:

𝑥-axis: distance threshold ρ
𝑦-axis: expected loss

Tightness: distance 
between gray points
and black curve
Ø Usually tight, 

especially in 
sensitive shifting 
setting

Soundness: gray 
points always below 
black curve
Ø Always sound

Given model ℎ@(⋅), compute an upper bound of its expected
loss on a fair test distribution 𝒬, i.e.,

𝐮𝐩𝐩𝐞𝐫 𝐛𝐨𝐮𝐧𝐝𝐢𝐧𝐠 max
𝒬

𝔼 =,> ∼𝒬 ℓ ℎ@ 𝑋 , 𝑌
s. t. dist 𝒫, 𝒬 ≤ 𝜌, 𝒬 is a fair distribution

Test distribution 𝓠 not too
far from training distribution

Measure performance on
distribution with fair base rate

Problem Formulation

Loss landscape of 𝔼 =,> ∼𝒬 ℓ ℎ@ 𝑋 , 𝑌 w.r.t. 𝒬
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Introduction

Core Methodology:
Subpopulation Decomposition

𝜌 User-specified distance threshold
dist 𝒫, 𝒬 Hellinger distance between distributions

where

Conclusions

More results & ablation 
studies in our paper!

• ML systems may be biased towards particular groups
• Existing approaches mainly evaluate fairness 
Ø Important & challenging to rigorously certify fairness, 

which is our focus

Main Contributions:
• We formulate certified fairness problem of an end-to-

end ML model
• We propose an effective fairness certification 

framework that for the first time solves this certified 
fairness problem by subpopulation decomposition

• We evaluate our framework on 6 real-world datasets 
to show its tightness and scalability


