

Certifying Some Distributional Fairness with Subpopulation Decomposition Mintong Kang^{*1}, Linyi Li^{*1}, Maurice Weber², Yang Liu³, Ce Zhang², Bo Li¹ ETH zürich III SANTA CRI7

¹University of Illinois Urbana-Champaign ²ETH Zürich ³University of California, Santa Cruz

Introduction

- ML systems may be biased towards particular groups
- Existing approaches mainly **evaluate** fairness
- > Important & challenging to rigorously **certify** fairness, which is our focus

Main Contributions:

- We formulate certified fairness problem of an end-toend ML model
- We propose an effective fairness certification framework that for the first time solves this certified fairness problem by subpopulation decomposition
- We evaluate our framework on 6 real-world datasets to show its tightness and scalability

Core Methodology: Subpopulation Decomposition

Decompose according to sensitve attribute X_s and label Y

$$\mathcal{P} = \sum_{\substack{s=1 \ S}}^{S} \sum_{\substack{y=1 \ P}}^{C} \Pr[X_s = s, Y = y] \cdot \mathcal{P}_{s,y},$$
$$\mathcal{Q} = \sum_{\substack{s=1 \ y=1}}^{S} \sum_{\substack{y=1 \ Q}}^{C} \Pr[X_s = s, Y = y] \cdot \mathcal{Q}_{s,y}$$

where ρ

Theoretical Observations

Distance Constraint	Decomposed to constraints on $\mathcal{P}_{s,y'} \mathcal{Q}_{s,y}$	Fai •
Fair Distribution	Equal to constraints on	Def
Constraint	$\Pr_{\mathcal{P}}[X_s = s, Y = y], \Pr_{\mathcal{Q}}[X_s = s, Y = y]$	bas

Distance constraint

Such fair distribution admits unconstrained $dist(\mathcal{P}, \mathcal{Q}) \leq \rho \Leftrightarrow$ parameterization: $1 - \rho^2 - \sum_{\mathcal{P}} \sum_{\mathcal{P}} \left[\sum_{\mathcal{P}} [X_s = s, Y = y] \Pr[X_s = s, Y = y] \left(1 - \operatorname{dist}(\mathcal{P}_{s,y}, \mathcal{Q}_{s,y})^2 \right) \le 0$

r Distribution Constraint

Consider discrete sensitive attribute X_s and label Y fine fair distribution to be distribution with fair se rate:

 $\Pr_{(X,Y)\sim Q}[Y = y | X_s = s_a] = \Pr_{(X,Y)\sim Q}[Y = y | X_s = s_b], \forall y, s_a, s_b$ \succ Sensitive attribute X_s has no effect on label Y at population level

 $\Pr_{(X,Y)\sim Q}[Y = y | X_s = s] = k_s r_y \quad (k_s, r_y \in [0,1])$

 \succ Usually tight, especially in

sensitive shifting setting

Soundness: gray points always below black curve > Always sound

More results & ablation studies in our paper!

x-axis: distance threshold ρ Figure 2: Certified fairness with general shifting. Grey points are results on generated distributions (Q) and the y-axis: expected loss black line is our fairness certificate based on Thm. 3. We observe that our fairness certificate is non-trivial.

arxiv.org/abs/ 2205.15494

Certification Procedure (Informal, Theorem 3)

Input: subpopulation statistics & subpopulation level constraints

 $\Pr_{\mathcal{D}}[X_s = s, Y = y], \mathbb{E}_{(X,Y) \sim \mathcal{P}_{s,Y}}[\ell(h_{\theta}(X), Y)]$

 $\Pr_{\mathcal{P}}[X_s = s, Y = y], \Pr_{\mathcal{O}}[X_s = s, Y = y], \mathbb{E}_{(X,Y) \sim \mathcal{P}_{s,y}}[\ell(h_{\theta}(X), Y)]$

Variables to optimize: dist $(\mathcal{P}_{s,y}, \mathcal{Q}_{s,y})^2$ (subject to distance constraints) **Key variable to upper bound**: $\mathbb{E}_{(X,Y)\sim Q_{s,v}}[\ell(h_{\theta}(X),Y)]$ Plug in Gramian bound [Weber et al, ICML 2022] to get upper bound Optimize the upper bound with low-dimensional convex optimization Bypass non-convexity with variable transforms 4. Maximization over all grids \Rightarrow **Output:** Certification of fairness!

• For sensitive shifting setting (no distribution shift within each subpopulation, only portions among subpopulations shifted), we have **simpler** fairness certification procedure with **tighter**

• Framework **amenable to finite sampling error**: with high-confidence intervals of statistics, we provide high-confidence probabilistic certification.

• Framework support any population loss function, e.g., can bound group risk discrepancy • Our fairness notion implies demographic parity (**DP**) and equalized odds (**EO**)

Experimental Evaluation

