General Cutting Planes for Bound-propagation Based Neural Network Verification

Huan Zhang* Shiqi Wang* Kaidi Xu* Linyi Li Bo Li Suman Jana Cho-Jui Hsieh Zico Kolter

*Equal contribution

Neural Network Verification (example: robustness)

Q: Does the classifier always predicts positive anywhere in the ball? **Mathematically:** solve $f^* = \min_{x \in \mathcal{C}} f(x)$; positive $f^* =$ verified **Difficulty:** non-convex due to ReLUs

A Classical Approach: Mixed Integer Programming [1]

Weakness: not optimized for neural network & hard to parallelize => very slow, hardly scale up to large networks

$$f^*=\min x^{(L)}$$
 Obj: last layer output at layer L s.t. $x^{(i)}=W^{(i)}\hat{x}^{(i-1)}+b^{(i)}$ $i\in\{1,\cdots,L\}$ Linear constraints $\hat{x}^{(i)}=\sigma(x^{(i)})$ $i\in\{1,\cdots,L-1\}$ ReLU can be encoded using an integer variable $\hat{x}^{(0)}=x, \quad x\in\mathcal{C}$ Input set $z^{(i)}\in\{0,1\}$

SOTA: Bound-Propagation-Based Verifiers

CROWN [2]: Propagating linear bounds backwards on GPUs

- Solves a lower bound of f^* by relaxing ReLU with linear bounds (same tightness as relaxing MIP -> LP)
- Exploiting problem structure; no LP solver is needed

β-CROWN [3]: bound propagation + branch and bound (BaB)

- Iteratively improves f^* using BaB with additional split constraints
- handles splits via new variable β in bound propagation

Weakness: fast on most instances but cannot solve some hard instances - need tighter bounds!

Why Adding General Cutting Planes?

Can produce tighter bounds on linear relaxations of the MIP problem

cannot handle cutting plane constraints!

GCP-CROWN: Bound-propagation with general cutting plane constraints for tighter bounds

Goal: Incorporating cutting planes to bound-propagation methods

Theorem 3.1 (Bound propagation with general cutting planes). Given any optimizable parameters $(0 \le \alpha_i^{(i)} \le 1)$ and $\beta \ge 0$, f_{LP-cut}^* is lower bounded by the following objective function, $\pi_i^{(i)^*}$ is a function of $Q_{\cdot,i}^{(i)}$

Optimizable variables
$$\alpha, \beta$$
 $g(\alpha, \beta) = -\epsilon \| \boldsymbol{\nu}^{(1)} \boldsymbol{\top} \mathbf{W}^{(1)} \boldsymbol{x}_0 \|_1 - \sum_{i=1}^L \boldsymbol{\nu}^{(i)} \mathbf{b}^{(i)} - \boldsymbol{\beta}^\top \boldsymbol{d} + \sum_{i=1}^{L-1} \sum_{j \in \mathcal{I}^{(i)}} h_j^{(i)}(\boldsymbol{\beta})$ where variables $\boldsymbol{\nu}^{(i)}$ are obtained by propagating $\boldsymbol{\nu}^{(L)} = -1$ throughout all $i \in [L-1]$: $\boldsymbol{\nu}$: propagated variable in bound propagation
$$\boldsymbol{\nu}^{(i)}_j = \boldsymbol{\nu}^{(i+1)} \boldsymbol{W}^{(i+1)}_{:,j} - \boldsymbol{\beta}^\top (\boldsymbol{H}^{(i)}_{:,j} + \boldsymbol{G}^{(i)}_{:,j}), \quad j \in \mathcal{I}^{+(i)}$$
 Cutting plane coefficients (previous works as special cases: H, G, Q being 0) $\boldsymbol{\nu}^{(i)}_j = \boldsymbol{\pi}^{(i)}_j - \boldsymbol{\alpha}^{(i)}_j [\hat{\boldsymbol{\nu}}^{(i)}_j]_- - \boldsymbol{\beta}^\top \boldsymbol{H}^{(i)}_{:,j}, \quad j \in \mathcal{I}^{(i)}$

Here $\hat{\nu}_i^{(i)}$, $\pi_i^{(i)^*}$ and $h_i^{(i)}(\boldsymbol{\beta})$ are defined for each unstable neuron $j \in \mathcal{I}^{(i)}$.

Optimizable cutting plane variable β & cutting plane coefficients H, G, Q

CROWN as a special case: H, G, Q are 0

\beta-CROWN as a special case: constraints only with $x_i^{(i)} \geq 0$ or $x_i^{(i)} \leq 0$

(special form of H, and G, Q are 0)

GCP-CROWN Design

Main thread: bound propagation on GPU, with cutting planes Parallel thread: A MIP solver on CPU, just for finding cutting planes

Future work: more efficient ways to find cutting planes (valid H, G, Q), specialized for NN verification

Results: VNN-COMP 2020 (oval20)

Completely solved (no timeout for the first time in literature) β -CROWN (VNNCOMP-21 winner) cannot solve 3 hard instances in 1hr

VNN-COMP 2021 (oval21 & cifar10-resnet)

Almost 2x instances verified than β -CROWN (VNN-COMP-2021 winner)

VNN-COMP 2022 (latest)

GCP-CROWN has been incorporated into our tool α,β -CROWN: winner of VNN-COMP 2021, 2022 α,β -CROWN is a versatile NN verifier for verifying robustness and other NN properties

Winner of International Verification of Neural Networks Competitions (VNN-COMP 2021,2022)

Try it today: abcrown.org

- [1] Evaluating Robustness of Neural Networks with Mixed Integer Programming, ICLR'18
- [2] Efficient Neural Network Robustness Certification with General Activation Functions, NeurIPS'18
- [3] Beta-CROWN: Efficient Bound Propagation with Per-neuron Split Constraints for Complete and Incomplete Neural Network Verification, NeurIPS'21