
A Model-Based Framework For Cloud API Testing
Junyi Wang , Xiaoying Bai , Linyi Li , Zhicheng Ji , Haoran Ma

Department of Computer Science and Technology
Tsinghua University

Beijing, China
baixy@tsinghua.edu.cn, wangjuny15@mails.tsinghua.edu.cn

Abstract—Following the Service-Oriented Architecture, a
large number of diversified Cloud services are exposed as Web
APIs (Application Program Interface), which serve as the
contracts between the service providers and service consumers.
Due to their massive and broad applications, any flaw in the
cloud APIs may lead to serious consequences. API testing is thus
necessary to ensure the availability, reliability, and stability of
cloud services. The research proposes a model-based approach to
automating API testing. The semi-structured API specifications,
like HTML specifications, are gathered from the Web sites using
web crawlers, and translated into XML/YAML-encoded
standard representations. A scenario editor is designed to specify
the dependencies among API operations. Test generators are
built to derive test scripts from the specifications and scenarios,
including test data, test cases for individual operations as well as
operations sequences. Various algorithms can be used for test
generation, such as combinatorial data generation, heuristic
graph search, and optimization algorithms. The produced test
scripts, together with a load model, can be deployed on Cloud
and scheduled for execution. A prototype system, called ATCloud,
was constructed to illustrate the process of API understanding,
test scenario modeling using directed diagraph annotated with
transfer probabilities between operations, cloud-based test
resources management, distributed workload simulation, and
performance monitoring.

Keywords—API testing; model-based testing; test automation;
cloud computing

I. INTRODUCTION
With the development of SaaS (Software-as-a-Service), the

concept of API (Application Program Interface) has been
extended beyond interfaces of program libraries [1]. It has
become the standard way for encapsulating software functions
as decoupled services. Services exposed by standard APIs
shield implementation details and heterogeneity, enabling
dynamic binding, invocation and composition of services. With
well-defined interfaces, it can effectively support software
reuse, interoperability and scalability at various granularities.
APIs, especially Web APIs for SaaS, are the contracts between
service providers and service consumers. On one hand, APIs
are used to declare commitments of functionalities by service
providers. On the other hand, APIs are the standards that need
to be followed strictly when programming and invocation for
service consumers. Following the Service-Oriented
Architecture, APIs get increasing popularization. A large
number of large enterprises such as banks (e.g. mobile apps),
airlines (e.g. real-time flight updates), or government (e.g.
eGov, open data) have been using APIs to provide services
such as data queries and functionalities, such that online

services can be composed dynamically and flexibly into
various business processes to adapt to agile consumer
expectations. According to Programmable Web report [3],
there have been over 15,000 APIs available nowadays, a
considerable increase from around 200 APIs in 2005.

However, the inherent open, collaborative, and dynamic
characteristics of Web APIs raise new threats to the quality of
systems [2]. As APIs are exposed for open access by a large
number of users on the Internet with the development of SaaS,
a defect in an open API may be wide spread, causing software
failures in a large scale. API testing is thus becoming necessary
to ensure the quality and reliability of APIs for individual
services and composite services. Cloud platforms, such as
Amazon, Azure, and Ali, provide APIs for various services
including computing services, storage services, data services,
infrastructure services, security services, and more and more
rich application services. As Cloud APIs are widely used and
continuously evolve online, it generates a pressing need of an
automatic testing approach to constantly detecting the changes
and potential defects in the services [4]. Particularly, it poses
following requirements for Cloud API testing.

• The number of APIs is large. It needs a lot of resources
to generate, manage, and execute test cases. Testing is
expensive, thus it is necessary to optimize test cases and
test resources.

• APIs are open to various usage scenarios. Many defects
are showed up in complicated situations. Intelligent
techniques are needed to generate sophisticated scenario
testing, such as complex operation sequences, abnormal
conditions, and so on.

• Cloud is promising to achieve economies of scale.
Massive scalability testing with various workloads is
thus critical for Cloud performance analysis.

In counter to these needs, the paper reported ATCloud, a
model-based automatic testing framework and a prototype
system to support Cloud API testing. As shown in Fig. 1,
ATCloud composes five main modules: Test Resource
Manager, API Understanding, Test Generation, Test Engine
and Test Analyzer.

1) Test Resource Manager. It manages all the test
resources of the users, allocates the resources for the test and
provides a web-based interface, where users can view test
resources, define test tasks, build test environment, set test
parameters, and track test results. Administrators can monitor
test resources and test tasks.

2017 IEEE 41st Annual Computer Software and Applications Conference

0730-3157/17 $31.00 © 2017 IEEE

DOI 10.1109/COMPSAC.2017.24

60

2) API Understanding. It automatically gathers the API
specifications from Cloud websites, interprets the syntax and
semantics of service data and operations, and transforms it into
internal semi-formal representations.

3) Test Generation. With built-in strategies, test cases are
generated at different levels using different algorithms.

4) Test Engine. Test cases are encoded in executable
scripts to be deployed at host environment, triggered on
schedule. In this research, a test Cloud was built to dynamically
allocate testing resources on demand across platforms.

5) Test Analyzer. Test results are collected, verified and
validated against requirements. A monitor was built to gather
performance indicators, visualize and report system status
during testing.

Fig. 1. Approach Overview

The rest of this paper is organized as follows. Section II
presents the design and key techniques of the proposed
framework, including API Understanding, the method and
algorithms of test generation, massive scalable workload
simulation, and the monitoring mechanism of Test Analyzer.
Section III introduces a prototype system of the framework.
Section IV reviews related work. Section V finally concludes
this paper.

II. THE MODEL-BASED TESTING FRAMEWORK

A. API Understanding
APIs are usually described in natural language, including

function signatures and descriptions, which contain parameter
data type, return value data type and the constraints and
conditions of function invocation. Taking the elastic computing
services as example, the function for stopping a virtual
machine instance must be invocated after the function for
starting the instance. To generate tests automatically from such
API definition, it needs to transform API documents into
machine-interpretable standard specifications. Fig. 2 shows the
process of API Understanding, which crawls Cloud services,
interprets API specifications, and transforms them into
YAML/XML-encoded description.

Fig.3 shows an example of XML-encoded API
specification, which could be further interpreted by test
generator for producing test scripts. The standard specification
models an API from three aspects: data modeling, individual
API modeling and API Scenario Modeling.

Fig. 2. API Understanding

Fig. 3. Example API XML Specificaiton

1) Domain Knowledge Capture
It captures domain knowledge such as data, operation

definition and some other constraints and conditions for Cloud
APIs. As showed in Fig. 2, API Crawler crawls the cloud
service’s web site for the descriptions of API interfaces
published in HTML format on the Cloud Platform. Using the
key concept extraction method, API Analyzer analyzes the
captured HTML files, including structural analysis and
condition analysis, in which structural analysis is mainly to
extract data and operational definitions, such as function
parameters, return values and names of function.

A key issue in API understanding is the modeling of
domain knowledge in terms of constraints and conditions. For
example, a constraint of parameter InstanceName says that:
“the name of the instance is required to contain [2,128]
English or Chinese characters, and it must be in uppercase
letters or "-". InstanceId, which default is instance, cannot start
with ‘http: //’ or ‘https: //’”. This type of constraint is critical to
system robustness and reliability testing, but usually
insufficiently defined in interface specification. To enhance the
modeling capability with interface semantics, it has a great
potential to improve test effectiveness and efficiency. However,
it is usually hard to obtain such constraints. In case APIs are
well-defined and documented, some constraints could be
extracted using natural language processing techniques. In

61

many cases, it requires additional manual efforts to feed in the
formalized specifications.

2) Data Modeling
In order to precisely capture data semantics and to enhance

the intelligence of test data generation, the data types of service
parameters are modeled with properties and constraints

ATCloud defines a data model from three perspectives:
basic data types, domain concepts, and properties and
constraints. Basic data types are often the meta-data of domain
objects, such as Integer, String, Boolean, and so on. Domain
concepts are domain objects with constraints, or user-defined
composite objects, such as MAC type，IP type, and TIME.
Properties and constraints are identified to model concept
semantics. For example, the constraints for CreateTopic says
that: “The subject name is required to be a string of no more
than 256 characters, must be preceded by a letter or number,
and the remainder can contain letters, numbers, and crossed
lines (-).”

3) Individual API Modeling
This is to characterize the functionalities provided by an

individual API service, which is defined by a 6-tuple as follows:

Service: =<ID, Name, Input, Output, Return, Constraint>

ID is the unique identifier for individual API service to be
tested. Name is its name. Input/Output is the set of input/output
parameters. Return represents the return value. Constraint
represents the constraints and conditions to invoke the API
service.

4) API Scenario Modeling

Fig. 4. An Example API Scenario Model.

A complex scenario by composing multiple APIs executed
in sequence usually has a higher potency to reveal defects than
single API testing [6]. Based on models for individual APIs,
API Scenario Modeler builds scenario models for complex
usage scenarios with multiple APIs. To capture API
composition scenarios, a Directed Transfer Graph is defined to
model the control flow and data flow among API invocations,
as shown in Fig. 4. A node in the graph represents an API
operation, and a directed link between two nodes represents a
valid execution sequence between two operations. The link can
be a conditional transfer, which is annotated with a Boolean
expression of the conditions, or an iteration, which is annotated
with the number of repeated times. In addition, the link is

annotated with transfer probability to identify the differences in
invocation frequencies among different operations.

Using the Transfer Matrix to represent the Directed
Transfer Graph, a formal definition of the scenario model is
defined as follows:

 Scenario: =< ID, Name, Description, Services, Matrix,
Start, End >

ID is the unique identifier for API scenario to be tested.
Name is its name. Description describes the main functions of
the scenario. Services represent the API services participating
in the scenario. Matrix, which is generated after traversing the
directed transfer probability diagraph, records the transfer
probability between any two services in the graph. Start /End
identifies the entrance and exit service of the scenario.

5) Workload modleing
The workload model is defined by a 5-tuple as follows:

Workload: =< Duration, Size, ThinkTime, WeightGroup,
ConfGroup>

Duration defines the time duration from the first request to
the last request sent of all users. After the end of the duration,
un-finished tasks will be interrupted. Size represents the
number of simulated users. ThinkTime represents the time
interval that each user follows when submitting a task request.
WeightGroup is a vector, where each element represents the
weight of the corresponding user group, and the sum of all the
elements in the vector is 1. Size and WeightGroup together
determine the number of users per user group. ConfGroup is
also a vector, where each element represents the task
assignment in the task request for each user in the
corresponding user group. The parameters of user groups are
set following certain statistical distribution models such as
significant constant distribution and Markov chain model.

B. API Test Generation
Based on API models, which includes data models,

individual API models and API scenario models, ATCloud
generates test cases at four perspectives: (1) Test data
generation based on API data specification and domain
knowledge. (2) Test operation generation based on individual
API modeling. (3) Operation sequence generation by traversing
the paths in the directed graph of the scenario model. (4)
Workload generation by generating the operation sequences
following the statistical distributions of the transferring
probabilities in the scenario model.

1) Test data generation based on API data specification
and domain knowledge. As data modeling of ATCloud models
domain data with their associated constraints, individual API
modeling then models the parameters of interface functions
using the pre-defined data types. Data values can be
participated into equivalent classes of valid (invalid) data
inputs for triggering normal (abnormal) service executions.
API Test Generator then analyzes the data model and data
constraints, using data partitioning, pattern matching, boundary
values, constraint solving, and multi-parameter combination, to
generate some normal and abnormal values of the API
interface invocating parameters. Fig. 5 sketches the algorithm
outline of test data generation.

62

Fig. 5. Test data generation algorithm

2) Test operation generation. API Test Generation module
uses combinatorial testing strategies, and decision table
techniques to generate test operations for each individual API
service. In order to trigger normal or abnormal API executions,
the data values of each parameter can be participated into
equivalent classes of valid or invalid data inputs. Combinatorial
testing strategies are used to select data partitions of each API
parameter, as to cover various executions of a service. As a
simple and intuitive way to list all possible solutions for
complex combination problems, decision tables are constructed
to specify the expected correspondences among inputs, outputs
and return value. By dividing data partitions for input
parameters of API automatically, ATCloud can achieve data
coverage. It adopts combinatorial algorithms to create a
decision table for API, which uses data partitions of input
parameters as condition attributes and return parameter as
decision attribute. REST protocol is used to invocate scripts, in
order to obtain the test results. It selects a specific set of test
data, invocate the API interface function to be tested, verify the
return value, and record the response time. The algorithm is
described as Fig. 6.

Fig. 6. Test operation generation algorithm

3) Operation sequence generation. By traversing the paths
in the Directed Transition Diagraph of the scenario model, test
cases for operation sequences are generated, which are in the
form of API sequences with the transition conditions, such as
the result of a Boolean expression of the conditions, an
iteration which is annotated with the number of repeated times,
or transfer probability which can identify the differences in
invoices among different operations. The algorithm is
described as Fig.7.

Fig. 7. Operation sequence generation

C. Massive Scalable Workload Simulation
On-demand resource allocation, high scalability and

elasticity are the critical promises of cloud platforms [4]. To
validate the performance of these promises, it needs to generate
large-scale test load by simulating the massive invocations of
Cloud APIs following various workload models. Workloads
can be derived by generating the operation sequences following
the statistical distributions of the transferring probabilities in
the scenario model. The workload model, represented by the
transfer probabilities, can also be obtained by analyzing
execution logs of the Cloud services to learn and characterize a
variety of application traces.

Various Cloud platforms exist worldwide, such as Amazon,
Azure, and Ali. The datacenters of each cloud platform are
distributed located. The distance between cloud servers and
clients can influence the performance of cloud platforms. To
simulate large-scale API invocations from geographically
dispersed clients, ATCloud maintains a pool of Cloud
resources from various vendors and data centers to provision
test resources on demand, test tasks are wrapped, scheduled
and remotely deployed to available VM(Virtual Machine)
instances[7]. A distributed concurrent programming language
named Erlang [8] is used to simulate the load generation, as
well.

Fig. 8. On-demand resource allocation.

As shown in Fig. 8, ATCloud maintains a test resource pool
of virtual machines across multiple Cloud platforms. After
parsing test requirement, the API Test Engine will create
several test tasks accordingly. Then these test tasks will be
passed to Resource Manager. The Resource Manager can
manage the resource pool and allocate test resources on
demand during the test. The working process is as follows:

• Resource Controller extracts resource requirements
such as the IaaS platform [9], compute capacity
requirements from these test tasks and submit them to
the Scheduler. In the meantime, these test tasks will be
sent to Deployer waiting for resources to deploy.

• Scheduler maintains a Resource Pool, which contains
the records of registered resources. After receiving
resource requirements, Scheduler will search Resource
Pool to find the most appropriate instances for each test
task. In the absence of sufficient resources, Scheduler
will also apply to the IaaS provider for new resources
[7].

• The schedule result will be returned to Deployer, which
manages virtual machines (such as creating, starting,

63

shutting down, cloning, and deleting virtual machines),
through adapters provided by the cloud platforms. The
adapter translates these operations into platform-
specific orders for cloud platforms to implement.

D. Test Analyzer
Test Analyzer collects test results, verified and validated

against requirements. Test reports, which are in markdown or
html format (as showed in Fig. 9) can be downloaded for
further use.

Fig. 9. Test reports

Test Analyzer also builds a monitor, which can gather
performance indicators, visualize and report system status
during testing. It tracks software execution, responds to policy
violations, verifies service reliability attributes, observes
system behavior, generate performance reports, and plot
performance graphs, as shown in Fig.10.

As different cloud platforms usually define their individual
performance indicators and provide limited access using
specific API, ATCloud builds integrated cloud performance
model and adapter architecture to match unified SLA (Service
Level Agreement) queries to various data collection interfaces.
An adapter is implemented for each cloud platform to collect
performance data by open APIs. The performance data are
wrapped using the unified performance model as follow:

Performance: =<CloudName, Resource, Indicator,
Statistics, Unit >

CloudName is the name of the cloud platform, which is
being monitored. Resource is resource types, such as CPU,
memory, Data Send Flow, and so on. Indicator describes
property of the recourse, such as Usage, Write, Read, and so on.
Statistics is the performance data aggregation method, for
example Average, Maximum and Minimum. Unit represents
performance’s unit of measure.

Fig. 10. Performance graphs

III. A PROTOTYPE SYSTEM
A prototype system is implemented to illustrate the

proposed framework. It is composed of a front-end server, a
controller server, a performance monitor server, and a central
database server. Two private clouds Ali and Azure are
deployed. Each cloud is composed of two physical servers.

The web UI front-end is developed for the whole system
using Bootstrap. Testers can choose API or API scenario for
testing, configure test resources, and schedule test executions，
as shown in Fig.11. Administrator testers can generate test
scenarios from the front-end graphical interface. As shown in
Fig.4, the node, which represents individual API can be created
by clicking the plus sign above the box on the right side of the
toolbar. The lines, which connect nodes and indicate the flow
of the control and the data can be created by clicking the two
nodes. The system limits the direction of the connections,
according to actual meaning.

Fig. 11. test generation defination

During execution, the performance monitor can collect
performance data and monitor the execution state and resource
utilization (as showed by figure 10). During test, Web UI front-
end provides the interface for testers to choose the performance
indicator which to be monitored. After test, it provides the
functionality of test result and the selected performance data
for browsing and downloading.

IV. RELATED WORK
Model-based testing derives concrete test cases from an

abstract test model, which describes entire sets of possible tests.
Test models are usually designed based on the specification
[10]. Various modeling techniques have been proposed for
depicting software behavior, such as Extended Finite State
Machine (EFSM), Specification Description Language (SDL),
ESTELLE, and UML [11, 12].

For example, Utting [12] proposed the seven-dimension
taxonomy of various conceptual approaches to model-based
testing, including model subject, model redundancy, model
characteristics, model paradigm, test selection criteria, test
generation technology, and test execution method. Cyrille et al.
proposed a model-based API tester for event-driven systems
named Modbat [5], which is tailored to event-driven or
input/output-driven systems, which support non-blocking I/O
operations, or operations throwing exceptions when
communication is disrupted. It uses extended finite-state
machines to model system behavior. Modbat offers a domain-
specific language that supports state machines and exceptions
as first-class constructs. And the model notation also handles

64

non-determinism in the system under test, and supports
alternative continuations of test cases depending on the
outcome of non-deterministic operations. In [10], it proposed a
model-based solution for API testing of Apache
ZooKeeper[17]. Using the tool Modbat [5], it generated test
cases for concurrent client sessions, and processes results from
synchronous and asynchronous callbacks. It also used an
embedded model checker to compute the test oracle for non-
deterministic outcomes, the oracle model evolved dynamically
with each new test step. It verified the complexity of
ZooKeeper by using a few hundred automated unit tests, and
showed how model-based testing can generate more tests, in a
way that increases the diversity of action sequences that are
tested and can uncover previously unknown defects. Dalal [11]
introduced four case studies of applying combinational test-
generation techniques in various applications. More and more
researchers investigate the effective process, methods,
techniques and tools to establish the model, generate tests and
evaluate results in a practical approach.

However, it is yet hard to establish MBT for large-scale
projects. It is quite usual that a model is effective for verifying
specific algorithms or data structures, but difficult to address
system level problems. To apply MBT in real industry
environment faces many difficulties. One issue is to how to
extract and specify software expected behavior [13]. Models
are conventionally developed in two ways [14, 12]: the black
box approach based on requirements specifications and the
white box approach based on code structures. Requirements are
mostly specified in natural languages, even using UML use
case model which is widely used for industry requirements
specification. It is hard to map natural language specification to
formal model completely and consistently [14]. Code structure
can be automatically extracted with program analysis
techniques [15]. But the model derived from code represents
software implementation, rather than expected behavior. Tests
generated in the white-box approach cannot validate software
against its requirements.

Following the SaaS concepts, software is structured into
loosely-coupled modules and interfaces can be defined with
well-formulated syntax and semantics. In this way, API is by
nature the requirements for all the software components that
are developed by individual parties and composed into the
integrated system. API-based testing was thus proposed as a
feasible solution of model-based test automation [16].
Blackburn [16] observed that APIs can be viewed as testable
requirements specification which can be represented,
understood and processed automatically by computers.
Following the API-driven principle, a test automation
framework and a system T_VEC was built. However, there is a
risk that many hidden constraints and conditions are not visible
from simple API specifications [14]. ATCloud improved the
API-driven principle, by incorporating constraints and
conditions into the API model.

V. SUMMARY AND CONCLUSION
A large number of Cloud APIs have been published, which

constantly evolve online and widely influence system
constructions. The paper presents the model-based testing

framework ATCloud to support Cloud API testing. ATCloud
aims to promote automatic API understanding and testing to
facilitate continuous quality control of Cloud-based software
systems. A prototype system has been implemented and
exercised on cloud platforms to illustrate the process of API
Understanding, API scenario modeling, massive scalable
workload simulation, on-demand test resource allocation, and
continuous monitoring.

ACKNOWLEDGEMENT
This work was supported by the National Key Research and

Development Program of China(2016YFB1000504) and the
National Natural Science Foundation of China(61472197).

REFERENCES
[1] Jacobson D, Brail G, Woods D. APIs: A strategy guide[M]. " O'Reilly

Media, Inc.", pp. 1-40, 2011.
[2] Maleshkova M, Pedrinaci C, Domingue J. Investigating web apis on the

world wide web[C]//Web Services (ECOWS), 2010 IEEE 8th European
Conference on. IEEE, 2010: 107-114.

[3] Programmable Web, “programmable Web report,”
https://www.programmableweb.com, 2005 , accessed 26 January 2017

[4] Gao J, Bai X, Tsai W T. Cloud testing-issues, challenges, needs and
practice[J]. Software Engineering: An International Journal, 2011, 1(1):
9-23.

[5] Artho C V, Biere A, Hagiya M, et al. Modbat: A model-based API tester
for event-driven systems[C]//Haifa Verification Conference. Springer
International Publishing, 2013: 112-128.

[6] Tsai W T, Bai X, Paul R, et al. Scenario-based functional regression
testing[C]//Computer Software and Applications Conference, 2001.
COMPSAC 2001. 25th Annual International. IEEE, 2001: 496-501.

[7] Bai X, Li M, Huang X, et al. Vee@ Cloud: The virtual test lab on the
cloud[C]//Proceedings of the 8th International Workshop on Automation
of Software Test. IEEE Press, 2013: 15-18.

[8] Armstrong J. Programming Erlang: software for a concurrent world[M].
Pragmatic Bookshelf, 2007.

[9] Kamboj R, Arya A. OpenStack: open source cloud computing IaaS
platform[J]. International Journal of Advanced Research in Computer
Science and Software Engineering, 2014, 4(5).

[10] Artho C, Rousset G. Model-based API Testing of Apache ZooKeeper.
//ICST, 10th IEEE International Conference on Software Testing,
Verification and Validation, IEEE, 2017.33.

[11] Dalal, S. R., Jain, A., Karunanithi, N., Leaton, J. M., Lott, C. M., Patton,
G. C., and Horowitz, B. M. 1999. Model-based testing in practice. In
ICSE '99 Proceedings of the 21st international conference on Software
engineering (Los Angeles, CA, USA, May 16 - 22, 1999). ACM New
York, NY, USA, 285-294.

[12] Utting, M., Legeard, B., Pretschner, A. 2006. A taxonomy of model-
based testing. Department of Computer Science, University of Waikato.

[13] Dwyer, M. B., Elbaum, S., Goddard S. A Pervasive Software Validation
Approach for Next Generation Avionics Systems. Available at:
http://chess.eecs.berkeley.edu/hcssas/papers/Dwyer-position.pdf.

[14] Denger, C., Mora, M. M. 2003. Test case derived from requirement
specifications. Technical report. Fraunhofer IESE, Germany.

[15] Bai, X., Liu, T. 2008. SyncTest: a Tool to Synchronize Source Code,
Model and Testing. In Proceedings of the 20th International Conference
on Software Engineering & Knowledge Engineering (SEKE'2008) (San
Francisco, CA, USA, July 1 - 3, 2008). 723-728.

[16] Blackburn, M., Busser, R., Nauman, A. 2004. Why model-based test
automation is different and what you should know to get started. In
International Conference on Practical Software Quality and Testing.
212-232.

[17] Junqueira F, Reed B. ZooKeeper: distributed process coordination[M]. "
O'Reilly Media, Inc.", 2013.

65

