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Abstract—Following the Service-Oriented Architecture, a 
large number of diversified Cloud services are exposed as Web 
APIs (Application Program Interface), which serve as the 
contracts between the service providers and service consumers. 
Due to their massive and broad applications, any flaw in the 
cloud APIs may lead to serious consequences. API testing is thus 
necessary to ensure the availability, reliability, and stability of 
cloud services. The research proposes a model-based approach to 
automating API testing. The semi-structured API specifications, 
like HTML specifications, are gathered from the Web sites using 
web crawlers, and translated into XML/YAML-encoded 
standard representations. A scenario editor is designed to specify 
the dependencies among API operations. Test generators are 
built to derive test scripts from the specifications and scenarios, 
including test data, test cases for individual operations as well as 
operations sequences. Various algorithms can be used for test 
generation, such as combinatorial data generation, heuristic 
graph search, and optimization algorithms. The produced test 
scripts, together with a load model, can be deployed on Cloud 
and scheduled for execution. A prototype system, called ATCloud, 
was constructed to illustrate the process of API understanding, 
test scenario modeling using directed diagraph annotated with 
transfer probabilities between operations, cloud-based test 
resources management, distributed workload simulation, and 
performance monitoring.  

Keywords—API testing; model-based testing; test automation; 
cloud computing 

I.  INTRODUCTION  
With the development of SaaS (Software-as-a-Service), the 

concept of API (Application Program Interface) has been 
extended beyond interfaces of program libraries [1]. It has 
become the standard way for encapsulating software functions 
as decoupled services. Services exposed by standard APIs 
shield implementation details and heterogeneity, enabling 
dynamic binding, invocation and composition of services. With 
well-defined interfaces, it can effectively support software 
reuse, interoperability and scalability at various granularities. 
APIs, especially Web APIs for SaaS, are the contracts between 
service providers and service consumers. On one hand, APIs 
are used to declare commitments of functionalities by service 
providers. On the other hand, APIs are the standards that need 
to be followed strictly when programming and invocation for 
service consumers. Following the Service-Oriented 
Architecture, APIs get increasing popularization. A large 
number of large enterprises such as banks (e.g. mobile apps), 
airlines (e.g. real-time flight updates), or government (e.g. 
eGov, open data) have been using APIs to provide services 
such as data queries and functionalities, such that online 

services can be composed dynamically and flexibly into 
various business processes to adapt to agile consumer 
expectations. According to Programmable Web report [3], 
there have been over 15,000 APIs available nowadays, a 
considerable increase from around 200 APIs in 2005. 

However, the inherent open, collaborative, and dynamic 
characteristics of Web APIs raise new threats to the quality of 
systems [2]. As APIs are exposed for open access by a large 
number of users on the Internet with the development of SaaS, 
a defect in an open API may be wide spread, causing software 
failures in a large scale. API testing is thus becoming necessary 
to ensure the quality and reliability of APIs for individual 
services and composite services. Cloud platforms, such as 
Amazon, Azure, and Ali, provide APIs for various services 
including computing services, storage services, data services, 
infrastructure services, security services, and more and more 
rich application services. As Cloud APIs are widely used and 
continuously evolve online, it generates a pressing need of an 
automatic testing approach to constantly detecting the changes 
and potential defects in the services [4]. Particularly, it poses 
following requirements for Cloud API testing.  

• The number of APIs is large. It needs a lot of resources 
to generate, manage, and execute test cases. Testing is 
expensive, thus it is necessary to optimize test cases and 
test resources.  

• APIs are open to various usage scenarios. Many defects 
are showed up in complicated situations. Intelligent 
techniques are needed to generate sophisticated scenario 
testing, such as complex operation sequences, abnormal 
conditions, and so on.  

• Cloud is promising to achieve economies of scale. 
Massive scalability testing with various workloads is 
thus critical for Cloud performance analysis.  

In counter to these needs, the paper reported ATCloud, a 
model-based automatic testing framework and a prototype 
system to support Cloud API testing. As shown in Fig. 1, 
ATCloud composes five main modules: Test Resource 
Manager, API Understanding, Test Generation, Test Engine 
and Test Analyzer.  

1) Test Resource Manager. It manages all the test 
resources of the users, allocates the resources for the test and 
provides a web-based interface, where users can view test 
resources, define test tasks, build test environment, set test 
parameters, and track test results. Administrators can monitor 
test resources and test tasks.  
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2) API Understanding. It automatically gathers the API 
specifications from Cloud websites, interprets the syntax and 
semantics of service data and operations, and transforms it into 
internal semi-formal representations.  

3) Test Generation.  With built-in strategies, test cases are 
generated at different levels using different algorithms.  

4) Test Engine. Test cases are encoded in executable 
scripts to be deployed at host environment, triggered on 
schedule. In this research, a test Cloud was built to dynamically 
allocate testing resources on demand across platforms. 

5) Test Analyzer. Test results are collected, verified and 
validated against requirements. A monitor was built to gather 
performance indicators, visualize and report system status 
during testing.  

 
Fig. 1. Approach Overview 

The rest of this paper is organized as follows. Section II 
presents the design and key techniques of the proposed 
framework, including API Understanding, the method and 
algorithms of test generation, massive scalable workload 
simulation, and the monitoring mechanism of Test Analyzer. 
Section III introduces a prototype system of the framework. 
Section IV reviews related work. Section V finally concludes 
this paper. 

II. THE MODEL-BASED TESTING FRAMEWORK 

A. API Understanding 
APIs are usually described in natural language, including 

function signatures and descriptions, which contain parameter 
data type, return value data type and the constraints and 
conditions of function invocation. Taking the elastic computing 
services as example, the function for stopping a virtual 
machine instance must be invocated after the function for 
starting the instance. To generate tests automatically from such 
API definition, it needs to transform API documents into 
machine-interpretable standard specifications. Fig. 2 shows the 
process of API Understanding, which crawls Cloud services, 
interprets API specifications, and transforms them into 
YAML/XML-encoded description. 

Fig.3 shows an example of XML-encoded API 
specification, which could be further interpreted by test 
generator for producing test scripts. The standard specification 
models an API from three aspects: data modeling, individual 
API modeling and API Scenario Modeling.  

 
Fig. 2. API Understanding 

 
Fig. 3. Example API XML Specificaiton 

1) Domain Knowledge Capture 
It captures domain knowledge such as data, operation 

definition and some other constraints and conditions for Cloud 
APIs. As showed in Fig. 2, API Crawler crawls the cloud 
service’s web site for the descriptions of API interfaces 
published in HTML format on the Cloud Platform. Using the 
key concept extraction method, API Analyzer analyzes the 
captured HTML files, including structural analysis and 
condition analysis, in which structural analysis is mainly to 
extract data and operational definitions, such as function 
parameters, return values and names of function. 

A key issue in API understanding is the modeling of 
domain knowledge in terms of constraints and conditions. For 
example, a constraint of parameter InstanceName says that: 
“the name of the instance is required to contain [2,128] 
English or Chinese characters, and it must be in uppercase 
letters or "-". InstanceId, which default is instance, cannot start 
with ‘http: //’ or ‘https: //’”. This type of constraint is critical to 
system robustness and reliability testing, but usually 
insufficiently defined in interface specification. To enhance the 
modeling capability with interface semantics, it has a great 
potential to improve test effectiveness and efficiency. However, 
it is usually hard to obtain such constraints. In case APIs are 
well-defined and documented, some constraints could be 
extracted using natural language processing techniques. In 
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many cases, it requires additional manual efforts to feed in the 
formalized specifications.  

2) Data Modeling 
In order to precisely capture data semantics and to enhance 

the intelligence of test data generation, the data types of service 
parameters are modeled with properties and constraints  

ATCloud defines a data model from three perspectives: 
basic data types, domain concepts, and properties and 
constraints. Basic data types are often the meta-data of domain 
objects, such as Integer, String, Boolean, and so on. Domain 
concepts are domain objects with constraints, or user-defined 
composite objects, such as MAC type，IP type, and TIME. 
Properties and constraints are identified to model concept 
semantics. For example, the constraints for CreateTopic says 
that: “The subject name is required to be a string of no more 
than 256 characters, must be preceded by a letter or number, 
and the remainder can contain letters, numbers, and crossed 
lines (-).” 

3) Individual API Modeling 
This is to characterize the functionalities provided by an 

individual API service, which is defined by a 6-tuple as follows:  

Service: =<ID, Name, Input, Output, Return, Constraint> 

ID is the unique identifier for individual API service to be 
tested. Name is its name. Input/Output is the set of input/output 
parameters. Return represents the return value. Constraint 
represents the constraints and conditions to invoke the API 
service.  

4) API Scenario Modeling 
 

 
Fig. 4. An Example API Scenario Model. 

A complex scenario by composing multiple APIs executed 
in sequence usually has a higher potency to reveal defects than 
single API testing [6]. Based on models for individual APIs, 
API Scenario Modeler builds scenario models for complex 
usage scenarios with multiple APIs. To capture API 
composition scenarios, a Directed Transfer Graph is defined to 
model the control flow and data flow among API invocations, 
as shown in Fig. 4. A node in the graph represents an API 
operation, and a directed link between two nodes represents a 
valid execution sequence between two operations. The link can 
be a conditional transfer, which is annotated with a Boolean 
expression of the conditions, or an iteration, which is annotated 
with the number of repeated times. In addition, the link is 

annotated with transfer probability to identify the differences in 
invocation frequencies among different operations. 

Using the Transfer Matrix to represent the Directed 
Transfer Graph, a formal definition of the scenario model is 
defined as follows: 

  Scenario: =< ID, Name, Description,  Services, Matrix, 
Start, End > 

ID is the unique identifier for API scenario to be tested. 
Name is its name. Description describes the main functions of 
the scenario. Services represent the API services participating 
in the scenario. Matrix, which is generated after traversing the 
directed transfer probability diagraph, records the transfer 
probability between any two services in the graph. Start /End 
identifies the entrance and exit service of the scenario. 

5)   Workload modleing  
The workload model is defined by a 5-tuple as follows: 

Workload: =< Duration, Size, ThinkTime, WeightGroup, 
ConfGroup> 

Duration defines the time duration from the first request to 
the last request sent of all users. After the end of the duration, 
un-finished tasks will be interrupted. Size represents the 
number of simulated users. ThinkTime represents the time 
interval that each user follows when submitting a task request. 
WeightGroup is a vector, where each element represents the 
weight of the corresponding user group, and the sum of all the 
elements in the vector is 1. Size and WeightGroup together 
determine the number of users per user group. ConfGroup is 
also a vector, where each element represents the task 
assignment in the task request for each user in the 
corresponding user group. The parameters of user groups are 
set following certain statistical distribution models such as 
significant constant distribution and Markov chain model. 

B. API Test Generation  
Based on API models, which includes data models, 

individual API models and API scenario models, ATCloud 
generates test cases at four perspectives: (1) Test data 
generation based on API data specification and domain 
knowledge. (2) Test operation generation based on individual 
API modeling. (3) Operation sequence generation by traversing 
the paths in the directed graph of the scenario model.  (4) 
Workload generation by generating the operation sequences 
following the statistical distributions of the transferring 
probabilities in the scenario model. 

1) Test data generation based on API data specification 
and domain knowledge. As data modeling of ATCloud models 
domain data with their associated constraints, individual API 
modeling then models the parameters of interface functions 
using the pre-defined data types. Data values can be 
participated into equivalent classes of valid (invalid) data 
inputs for triggering normal (abnormal) service executions. 
API Test Generator then analyzes the data model and data 
constraints, using data partitioning, pattern matching, boundary 
values, constraint solving, and multi-parameter combination, to 
generate some normal and abnormal values of the API 
interface invocating parameters. Fig. 5 sketches the algorithm 
outline of test data generation. 
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Fig. 5. Test data generation algorithm 

2) Test operation generation. API Test Generation module 
uses combinatorial testing strategies, and decision table 
techniques to generate test operations for each individual API 
service. In order to trigger normal or abnormal API executions, 
the data values of each parameter can be participated into 
equivalent classes of valid or invalid data inputs. Combinatorial 
testing strategies are used to select data partitions of each API 
parameter, as to cover various executions of a service. As a 
simple and intuitive way to list all possible solutions for 
complex combination problems, decision tables are constructed 
to specify the expected correspondences among inputs, outputs 
and return value. By dividing data partitions for input 
parameters of API automatically, ATCloud can achieve data 
coverage. It adopts combinatorial algorithms to create a 
decision table for API, which uses data partitions of input 
parameters as condition attributes and return parameter as 
decision attribute. REST protocol is used to invocate scripts, in 
order to obtain the test results. It selects a specific set of test 
data, invocate the API interface function to be tested, verify the 
return value, and record the response time. The algorithm is 
described as Fig. 6. 

 
Fig. 6. Test operation generation algorithm 

3) Operation sequence generation. By traversing the paths 
in the Directed Transition Diagraph of the scenario model, test 
cases for operation sequences are generated, which are in the 
form of API sequences with the transition conditions, such as 
the result of a Boolean expression of the conditions, an 
iteration which is annotated with the number of repeated times, 
or transfer probability which can identify the differences in 
invoices among different operations. The algorithm is 
described as Fig.7. 

 

Fig. 7. Operation sequence generation 

C. Massive Scalable Workload Simulation  
On-demand resource allocation, high scalability and 

elasticity are the critical promises of cloud platforms [4]. To 
validate the performance of these promises, it needs to generate 
large-scale test load by simulating the massive invocations of 
Cloud APIs following various workload models. Workloads 
can be derived by generating the operation sequences following 
the statistical distributions of the transferring probabilities in 
the scenario model. The workload model, represented by the 
transfer probabilities, can also be obtained by analyzing 
execution logs of the Cloud services to learn and characterize a 
variety of application traces. 

Various Cloud platforms exist worldwide, such as Amazon, 
Azure, and Ali. The datacenters of each cloud platform are 
distributed located. The distance between cloud servers and 
clients can influence the performance of cloud platforms. To 
simulate large-scale API invocations from geographically 
dispersed clients, ATCloud maintains a pool of Cloud 
resources from various vendors and data centers to provision 
test resources on demand, test tasks are wrapped, scheduled 
and remotely deployed to available VM(Virtual Machine) 
instances[7]. A distributed concurrent programming language 
named Erlang [8] is used to simulate the load generation, as 
well. 

 
Fig. 8. On-demand resource allocation. 

As shown in Fig. 8, ATCloud maintains a test resource pool 
of virtual machines across multiple Cloud platforms. After 
parsing test requirement, the API Test Engine will create 
several test tasks accordingly. Then these test tasks will be 
passed to Resource Manager. The Resource Manager can 
manage the resource pool and allocate test resources on 
demand during the test. The working process is as follows: 

• Resource Controller extracts resource requirements 
such as the IaaS platform [9], compute capacity 
requirements from these test tasks and submit them to 
the Scheduler. In the meantime, these test tasks will be 
sent to Deployer waiting for resources to deploy. 

• Scheduler maintains a Resource Pool, which contains 
the records of registered resources. After receiving 
resource requirements, Scheduler will search Resource 
Pool to find the most appropriate instances for each test 
task. In the absence of sufficient resources, Scheduler 
will also apply to the IaaS provider for new resources 
[7]. 

• The schedule result will be returned to Deployer, which 
manages virtual machines (such as creating, starting, 
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shutting down, cloning, and deleting virtual machines), 
through adapters provided by the cloud platforms. The 
adapter translates these operations into platform-
specific orders for cloud platforms to implement.  

D. Test Analyzer 
Test Analyzer collects test results, verified and validated 

against requirements. Test reports, which are in markdown or 
html format (as showed in Fig. 9) can be downloaded for 
further use.  

 
Fig. 9. Test reports 

Test Analyzer also builds a monitor, which can gather 
performance indicators, visualize and report system status 
during testing. It tracks software execution, responds to policy 
violations, verifies service reliability attributes, observes 
system behavior, generate performance reports, and plot 
performance graphs, as shown in Fig.10.  

As different cloud platforms usually define their individual 
performance indicators and provide limited access using 
specific API, ATCloud builds integrated cloud performance 
model and adapter architecture to match unified SLA (Service 
Level Agreement) queries to various data collection interfaces. 
An adapter is implemented for each cloud platform to collect 
performance data by open APIs. The performance data are 
wrapped using the unified performance model as follow: 

Performance: =<CloudName, Resource, Indicator, 
Statistics, Unit > 

CloudName is the name of the cloud platform, which is 
being monitored. Resource is resource types, such as CPU, 
memory, Data Send Flow, and so on. Indicator describes 
property of the recourse, such as Usage, Write, Read, and so on. 
Statistics is the performance data aggregation method, for 
example Average, Maximum and Minimum. Unit represents 
performance’s unit of measure. 

 
Fig. 10. Performance graphs 

III. A PROTOTYPE SYSTEM 
A prototype system is implemented to illustrate the 

proposed framework. It is composed of a front-end server, a 
controller server, a performance monitor server, and a central 
database server. Two private clouds Ali and Azure are 
deployed. Each cloud is composed of two physical servers.  

The web UI front-end is developed for the whole system 
using Bootstrap. Testers can choose API or API scenario for 
testing, configure test resources, and schedule test executions，
as shown in Fig.11. Administrator testers can generate test 
scenarios from the front-end graphical interface. As shown in 
Fig.4, the node, which represents individual API can be created 
by clicking the plus sign above the box on the right side of the 
toolbar. The lines, which connect nodes and indicate the flow 
of the control and the data can be created by clicking the two 
nodes. The system limits the direction of the connections, 
according to actual meaning. 

 
Fig. 11. test generation defination 

During execution, the performance monitor can collect 
performance data and monitor the execution state and resource 
utilization (as showed by figure 10). During test, Web UI front-
end provides the interface for testers to choose the performance 
indicator which to be monitored. After test, it provides the 
functionality of test result and the selected performance data 
for browsing and downloading. 

IV. RELATED WORK 
Model-based testing derives concrete test cases from an 

abstract test model, which describes entire sets of possible tests. 
Test models are usually designed based on the specification 
[10]. Various modeling techniques have been proposed for 
depicting software behavior, such as Extended Finite State 
Machine (EFSM), Specification Description Language (SDL), 
ESTELLE, and UML [11, 12].  

For example, Utting [12] proposed the seven-dimension 
taxonomy of various conceptual approaches to model-based 
testing, including model subject, model redundancy, model 
characteristics, model paradigm, test selection criteria, test 
generation technology, and test execution method. Cyrille et al. 
proposed a model-based API tester for event-driven systems 
named Modbat [5], which is tailored to event-driven or 
input/output-driven systems, which support non-blocking I/O 
operations, or operations throwing exceptions when 
communication is disrupted. It uses extended finite-state 
machines to model system behavior. Modbat offers a domain-
specific language that supports state machines and exceptions 
as first-class constructs. And the model notation also handles 
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non-determinism in the system under test, and supports 
alternative continuations of test cases depending on the 
outcome of non-deterministic operations. In [10], it proposed a 
model-based solution for API testing of Apache 
ZooKeeper[17]. Using the tool Modbat [5], it generated test 
cases for concurrent client sessions, and processes results from 
synchronous and asynchronous callbacks. It also used an 
embedded model checker to compute the test oracle for non-
deterministic outcomes, the oracle model evolved dynamically 
with each new test step. It verified the complexity of 
ZooKeeper by using a few hundred automated unit tests, and 
showed how model-based testing can generate more tests, in a 
way that increases the diversity of action sequences that are 
tested and can uncover previously unknown defects. Dalal [11] 
introduced four case studies of applying combinational test-
generation techniques in various applications. More and more 
researchers investigate the effective process, methods, 
techniques and tools to establish the model, generate tests and 
evaluate results in a practical approach. 

However, it is yet hard to establish MBT for large-scale 
projects. It is quite usual that a model is effective for verifying 
specific algorithms or data structures, but difficult to address 
system level problems. To apply MBT in real industry 
environment faces many difficulties. One issue is to how to 
extract and specify software expected behavior [13]. Models 
are conventionally developed in two ways [14, 12]: the black 
box approach based on requirements specifications and the 
white box approach based on code structures. Requirements are 
mostly specified in natural languages, even using UML use 
case model which is widely used for industry requirements 
specification. It is hard to map natural language specification to 
formal model completely and consistently [14]. Code structure 
can be automatically extracted with program analysis 
techniques [15]. But the model derived from code represents 
software implementation, rather than expected behavior. Tests 
generated in the white-box approach cannot validate software 
against its requirements. 

Following the SaaS concepts, software is structured into 
loosely-coupled modules and interfaces can be defined with 
well-formulated syntax and semantics. In this way, API is by 
nature the requirements for all the software components that 
are developed by individual parties and composed into the 
integrated system. API-based testing was thus proposed as a 
feasible solution of model-based test automation [16]. 
Blackburn [16] observed that APIs can be viewed as testable 
requirements specification which can be represented, 
understood and processed automatically by computers. 
Following the API-driven principle, a test automation 
framework and a system T_VEC was built. However, there is a 
risk that many hidden constraints and conditions are not visible 
from simple API specifications [14]. ATCloud improved the 
API-driven principle, by incorporating constraints and 
conditions into the API model. 

V. SUMMARY AND CONCLUSION 
A large number of Cloud APIs have been published, which 

constantly evolve online and widely influence system 
constructions. The paper presents the model-based testing 

framework ATCloud to support Cloud API testing. ATCloud 
aims to promote automatic API understanding and testing to 
facilitate continuous quality control of Cloud-based software 
systems. A prototype system has been implemented and 
exercised on cloud platforms to illustrate the process of API 
Understanding, API scenario modeling, massive scalable 
workload simulation, on-demand test resource allocation, and 
continuous monitoring. 
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