
The First Prompt Counts the Most! An Evaluation of Large
Language Models on Iterative Example-Based Code
Generation
YINGJIE FU, School of Computer Science, Peking University, China
BOZHOU LI, Peking University, China
LINYI LI∗, School of Computing Science, Simon Fraser University, Canada
WENTAO ZHANG, Center for Machine Learning Research, Peking University, China
TAO XIE∗, Key Laboratory of High Confidence Software Technologies (Peking University), Ministry of
Education; School of Computer Science, Peking University, China

The capabilities of Large Language Models (LLMs) in code generation have been extensively studied, particu-
larly for implementing target functionalities from natural-language descriptions. As an alternative to natural
language, input-output (I/O) examples provide an accessible, unambiguous, and flexible way to describe
functionalities. However, their inherent diversity, opaqueness, and incompleteness impose greater challenges
for understanding and implementing the target requirements. Therefore, generating code from I/O examples
(i.e., example-based code generation) provides a new perspective, allowing us to additionally evaluate LLMs’
capability to infer target functionalities from limited information and to process new-form requirements.
However, related research about LLMs in example-based code generation remains largely unexplored. To fill
this gap, this paper presents the first comprehensive study on example-based code generation using LLMs. To
address the incorrectness caused by the incompleteness of I/O examples, we adopt an iterative evaluation
framework and formalize the objective of example-based code generation as two sequential sub-objectives:
generating code conforming to the given examples and generating code that successfully implements the target
functionalities from (iteratively) given examples. We assess six state-of-the-art LLMs using a new benchmark
of 172 diverse target functionalities (derived from HumanEval and CodeHunt). The results demonstrate that
when requirements are described using iterative I/O examples rather than natural language, the LLMs’ score
decreases by over 60%, indicating that example-based code generation remains challenging for the evaluated
LLMs. Notably, the vast majority (even over 95%) of successfully implemented functionalities are achieved
in the first round of the iterations, suggesting that the LLMs struggle to effectively utilize the iteratively
supplemented requirements. Furthermore, we find that combining I/O examples with even imprecise and
fragmental natural language descriptions greatly improves LLM performance, and the selection of initial
I/O examples can also influence the score, suggesting opportunities for prompt optimization. These findings
highlight the importance of early prompts during interactions and offer critical insights and implications for
enhancing LLM-based code generation.

CCS Concepts: • Software and its engineering→ Software development techniques.

∗Tao Xie (taoxie@pku.edu.cn) and Linyi Li (linyi_li@sfu.ca) are correspondence authors.

Authors’ addresses: Yingjie Fu, School of Computer Science, Peking University, Beijing, China, yingjiefu@stu.pku.edu.cn;
Bozhou Li, Peking University, Beijing, China, libozhou@pku.edu.cn; Linyi Li, linyi_li@sfu.ca, School of Computing Science,
Simon Fraser University, Burnaby, BC, Canada; Wentao Zhang, wentao.zhang@pku.edu.cn, Center for Machine Learning
Research, Peking University, Beijing, China; Tao Xie, taoxie@pku.edu.cn, Key Laboratory of High Confidence Software
Technologies (Peking University), Ministry of Education; School of Computer Science, Peking University, Beijing, China.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM 2994-970X/2025/7-ARTISSTA070
https://doi.org/10.1145/3728947

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA070. Publication date: July 2025.

HTTPS://ORCID.ORG/0000-0003-2574-9774
HTTPS://ORCID.ORG/0009-0001-7519-5733
HTTPS://ORCID.ORG/0000-0002-5403-3217
HTTPS://ORCID.ORG/0000-0002-7532-5550
HTTPS://ORCID.ORG/0000-0002-6731-216X
https://orcid.org/0000-0003-2574-9774
https://orcid.org/0009-0001-7519-5733
https://orcid.org/0000-0002-5403-3217
https://orcid.org/0000-0002-7532-5550
https://orcid.org/0000-0002-6731-216X
https://doi.org/10.1145/3728947

ISSTA070:2 Yingjie Fu, Bozhou Li, Linyi Li, Wentao Zhang, and Tao Xie

Additional Key Words and Phrases: Large Language Models, Example-Based Code Generation, Prompt Engi-
neering, Empirical Study, Multi-Turn Interaction

ACM Reference Format:
Yingjie Fu, Bozhou Li, Linyi Li, Wentao Zhang, and Tao Xie. 2025. The First Prompt Counts the Most! An
Evaluation of Large Language Models on Iterative Example-Based Code Generation. Proc. ACM Softw. Eng. 2,
ISSTA, Article ISSTA070 (July 2025), 24 pages. https://doi.org/10.1145/3728947

1 INTRODUCTION
Code generation has been recognized as one of the most important and promising applications of

large language models (LLMs) [47]. State-of-the-art LLMs, e.g., Llama [17, 21, 63], Gemma [57–59],
DeepSeek [15, 25], ChatGPT [55], and GPT4 [50], have shown impressive capabilities in generating
executable programs from prompts detailing target functionalities. Typically, a prompt for a target
functionality consists of a natural-language description, and may sometimes include supplementary
information such as input-output (I/O) examples and function signatures [3, 10, 12, 16, 27, 28, 34,
37, 39].

In addition to natural language, I/O examples also provide an easily accessible, unambiguous, and
flexible way to describe the target functionalities. First, I/O examples offer a straightforward and
user-friendly alternative when natural-language descriptions are unavailable. For non-expert users
who struggle to articulate requirements clearly, I/O examples provide a straightforward way to
express their intent [23]. For reverse engineering tasks [26] (e.g., binary de-obfuscation [14]) whose
goal is to reproduce existing programs or interfaces with unknown functionalities, I/O examples can
be iteratively gathered through interactions to reveal these functionalities. Second, I/O examples
are concrete and precise, being able to reduce misunderstanding in functional descriptions [4, 24].
Specifically, I/O examples clearly illustrate the expected outputs for specific inputs, offering clear
guidance on program behavior [9]. This characteristic allows I/O examples in functional descriptions
to serve as tests directly, enabling automated and efficient correctness checking of the generated
code [29, 52]. Third, I/O examples can be dynamically updated to clarify, refine, or expand the target
functionalities. For instance, both the failing tests and the observed edge cases during development
can be used to create new I/O examples, aiding in the adaptive clarification and refinement of
functionality descriptions [19, 29].

Functional descriptions in the form of I/O examples present three additional challenges for code
generation tasks. First, I/O examples are not frequently included in the training data for code
generation [67], posing difficulties for models in understanding the requirements conveyed in this
form. Specifically, I/O examples are often limited in quantity, typically appearing in test cases or
supplements to the natural-language descriptions. Compared to the potentially extensive input
space, these examples can cover only a small fraction. Second, I/O examples do not explicitly
state how to derive the expected outputs, placing a high demand on the inferring and generalizing
capability of a code generator. Without hints about the structure or logic of the code, LLMs must
deduce the underlying transformation from a limited number of I/O examples and apply them
across diverse contexts. Third, a single set of I/O examples usually cannot completely specify
target functionalities, requiring a code generator to iteratively receive supplementary prompts
and refine generated code. In extreme scenarios, the code may simply match each input with a
branch to satisfy the given examples but does not achieve the target functionality. Therefore, it is
important for a code generator to utilize adaptively supplemented prompts.

To investigate the potential of LLMs on code generation from I/O examples (aka example-based
code generation), in this paper, we conduct the first comprehensive study (to the best of our
knowledge). Considering the inherent incompleteness (i.e., hardly achieving a comprehensive
sampling of the input space) of I/O examples in describing the target functionality, we refine the

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA070. Publication date: July 2025.

https://doi.org/10.1145/3728947

An Evaluation of Large Language Models on Iterative Example-Based Code Generation ISSTA070:3

objective of example-based code generation into two sequential sub-objectives, and propose an
iterative evaluation framework to provide supplementary I/O examples adaptively.

• Sub-Objective1 (O1): Generating code that conforms to all given I/O examples. This objective
concerns the capability to understand requirements conveyed through I/O examples.
Specifically, it focuses on only the given I/O examples, disregarding whether the code satisfies
all possible I/O examples of the target functionalities.

• Sub-Objective2 (O2): Generating code that successfully implements the target functionality.
This objective additionally concerns two capabilities: inferring target functionalities
from I/O examples and improving generated code through iterative feedback. The
target functionality is defined by reference code that is executable but invisible to LLMs. The
generated code is expected to be input-output equivalent to the reference code. Otherwise,
the framework adaptively supplements new I/O examples to reveal their differences.

To enable a comprehensive evaluation, we construct a benchmark comprising 172 target func-
tionalities drawn from existing code benchmarks. Each functionality is accompanied by five sets of
randomly sampled I/O examples as the starting point of the iteration. With this new benchmark,
we conduct thorough evaluations and analysis on six state-of-the-art large language models (one
closed-source and five open-source).

Evaluation Results. First, the evaluation results reveal that when programming requirements
are provided in the form of only I/O examples (rather than natural languages), the code generation
capability of LLMs declines greatly. Furthermore, the score for finally implementing the target
functionality drops even over 60%. Among the evaluated models, GPT-4o-mini achieves pass@10
values ranging from 0.30 to 0.32, outperforming all other open-source models with approximately
7B parameters. Meanwhile, DeepseekCoder-6.7b-instruct achieves pass@10 values between 0.22
and 0.24, leading among open-source models with an approximately 80% improvement over the
second place. Moreover, we find that providing I/O examples along with relevant natural language
information (even if that information is inaccurate and fragmented) can substantially improve
scores. Finally, by analyzing the results under different types of functionalities, we conclude that it
is easier for the evaluated LLMs to generate code for functionalities related to string manipulations
in example-based code generation. In addition to the functionality-related characteristics, LLMs’
scores are also influenced by the selection of I/O examples in the prompt.
Findings and Implications. After identifying the limitations of LLMs in example-based code

generation, we further analyze the generated code and trends across iterations. First, we observe
that the code generated by LLMs may simply employ if statements to match the given I/O examples,
and this tendency most commonly occurs with Llama-2-7b-chat. This observation illustrates the
necessity of iterative evaluation frameworks for example-based code generation. Second, during
the iteration process, the very first rounds of interactions play the most critical role in the ultimate
success, because the evaluated LLMs are not good at utilizing the iteratively supplemented feedback.
This finding underscores the importance of selecting appropriate initial I/O examples for example-
based code generation. More importantly, our benchmark covers an under-explored topic (code
generation with multi-turn requirements) and suggests that current LLMs may be relatively weak
in achieving multi-turn requirements and iteratively given requirements compared to single-turn
ones.

In summary, our paper makes the following main contributions.

• The first comprehensive study of LLMs’ capability in example-based code generation.
We regard example-based code generation as a task with multi-turn requirements, formalizing
it into two sequential sub-objectives.

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA070. Publication date: July 2025.

ISSTA070:4 Yingjie Fu, Bozhou Li, Linyi Li, Wentao Zhang, and Tao Xie

Example Creation: Constructing I/O
examples that demonstrate the target
functionality.

Code Generation: Processing the
given examples and generating code
conforming to them.

Review and Testing: Checking
whether the generated code
implements the target functionality.

Feedback Generation: Constructing
new supplementary examples that
illustrate the differences between the
target functionality and the current code.

Example Creation Code Generation

Review and
Testing

Feedback
Generation

Code
Improvement

Code GeneratorProvider of the Target Functionality

Input-output
Examples

Generated
Code

Fail

Supplementary
Examples

Improved
Code

START

END Pass

Code Improvement: Iteratively
regenerating code according to the
supplemented examples, until the
target functionality is implemented.

Fig. 1. The Interactive Workflow of Example-Based Code Generation

• An iterative evaluation framework for example-based code generation and a new
benchmark applicable to this framework. Both the framework and the benchmark can
be reused and extended for more programming languages and functionalities.

• Comprehensive evaluation, comparison, and analysis of six state-of-the-art LLMs.
The evaluation compares the scores of different LLMs, summarizes their trends over iterations,
analyzes their strengths/weaknesses in different types of functionalities, and provides an
initial exploration of factors that may contribute to improvements.

• Empirical evidence of current LLMs’ limitations in example-based code generation,
particularly in handling I/O example requirements and refining code through it-
erative feedback. The evidence offers an important insight into LLMs’ code generation
capability and provides valuable suggestions for applying LLMs to code generation with
multi-turn requirements.

2 BACKGROUND
In this section, we first introduce example-based code generation, an important area in both the

research and practice communities. After that, we summarize the progress of LLMs, highlighting
their outstanding capabilities in code generation.

2.1 Example-based Code Generation
Example-based Code Generation (aka Programming by Examples, PBE) [23], referring to au-

tomatically synthesizing programs specified by only input-output examples (I/O examples), has
been widely illustrated to be powerful in many real-world applications [5, 22, 35, 44, 46, 51, 53, 65],
e.g., web automation [5], string processing [22], and data extraction [35, 53]. Typical approaches
for example-based code generation leverage search-based algorithms [69], which are feasible on
only carefully designed domain-specific language. However, for general-purpose programming
languages, these approaches struggle with complicated syntax and extensive search space.

I/O examples can serve as an easily accessible and understandable format of specifications, but
they are usually incomplete [54] for describing functionalities. In other words, the generated code
may conform to all the given examples but not implement the target functionality. As a result,
example-based code generation requires an interactive workflow, which allows iterative feedback to
clarify the specification. The interactive workflow usually includes five steps (as shown in Figure 1).
Inspired by the workflow, our evaluation adopts an iterative evaluation framework, which can also
adaptively construct supplementary I/O examples to clarify the target functionality.

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA070. Publication date: July 2025.

An Evaluation of Large Language Models on Iterative Example-Based Code Generation ISSTA070:5

Supplementary-Input Generator

Yes

1. Generated code

Program Executor
Supplementary

examples
(input-output pairs)

Yes

Start

1. Initial examples
(input-output pairs)

2. Signatures and Import
statements

First-Prompt
Generator

(pre-processing)

LLM

Prompts
Generated

codeCode Extractor
(post-processing)

Responses Example-based Checker

Passes all given examples?

Yes

No
Fail

(stage1)
Stage1:

First-Round Interaction

Stage2:
Iterative Interaction

2. Already given examples

Supplementary
inputs Feedback-Prompt

Generator
(pre-processing)

LLM

Prompts

Code Extractor
(post-processing)

ResponsesReference Code

Generated Code
Generated code

Fail
(stage2)Success

Find any supplementary inputs that make the expected
outputs and actual outputs unequal?

Expected Output

Actual Output
Input

No
Unequal?

Reference Code

No

Example-based Checker

Passes all given examples?

Fig. 2. The Iterative Evaluation Framework

2.2 LLMs on Code Generation
State-of-the-art LLMs [55, 58, 63] have shown their impressive capabilities in various natural-

language tasks [11], including code generation (e.g., generating code snippets, completing functions,
and even solving competitive programming problems) by understanding natural language prompts
of the target functionalities [12, 21, 25, 39, 48, 57]. Particularly, even medium-sized LLMs (those
with fewer than 10B parameters, e.g., DeepSeek-Coder 6.7b [25]) can achieve over 50% correctness
on commonly used programming languages.

3 ITERATIVE EVALUATION FRAMEWORK
In this section, we introduce the iterative evaluation framework consisting of two stages: first-

round interaction and iterative interaction. Specifically, first-round interaction focuses on generating
code that conforms to all the given I/O examples, and iterative interaction focuses on implementing
the target functionality according to the (iteratively supplemented) I/O examples.

Figure 2 shows the overall workflow of the framework. The evaluation starts with thefirst-round
interaction stage, where the prompts direct an LLM to generate code based on a set of given I/O
examples. If the generated code cannot produce all the expected outputs for the given examples, we
consider the attempt to fail and end. In the iterative interaction stage, the framework iteratively
checks whether the code successfully implements the target functionality, and supplements new I/O
examples to clarify the discrepancies if it does not. During the iterations, once the LLM generates
code that conflicts with any given I/O example, we exit the iteration and regard it as a failed attempt.
Only if no I/O example can be found to demonstrate the discrepancies between the target and the
actual functionalities, we consider the LLM to successfully implement the target functionality.
In both stages, the framework interacts with the LLM through two components: a prompt

generator and a code extractor. The prompt generator receives I/O examples and the checking
results of the generated code (if any), using them to construct prompts together with the signature
of the target functionality. The code extractor processes the LLM’s answers, extracting all code
snippets from the answers using regular-expression rules. It also filters the code that cannot be
successfully compiled. The extracted code snippets are then sent to a code checker, which adopts
different criteria in the first-round interaction and the iterative interaction.
Running Example. To illustrate the evaluation framework, consider the programming task

of “checking whether the third integer equals the sum of the first two integers.” Assume that the
input parameters are integers ranging from 0 to 20, with each iteration providing three additional
I/O examples. Initially, the set includes three I/O examples: (1) function(1, 2, 3) = true, (2)
function(10, 5, 2) = false, and (3) function(5, 2, 3) = false. In the first-round interaction,

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA070. Publication date: July 2025.

ISSTA070:6 Yingjie Fu, Bozhou Li, Linyi Li, Wentao Zhang, and Tao Xie

/* Finish this function according to the following examples. */
// TryCode.function (1, 2, 3) = true
// TryCode.function (10, 5, 2) = false
// TryCode.function (5, 2, 3) = false
using Systems;

public class TryCode{

 public static bool function(int x, int y, int z){}}

Using Statement

Function Signature

Initial Examples

Instruction

(a) The first prompt in first-round interaction stage

/* The previous examples I provided are incomplete, please see the
supplementary examples, infer and generate the code. */
// TryCode.function (2, 3, 4) = false
// TryCode.function (1, 2, 5) = false
// TryCode.function (1, 1, 2) = true
using Systems;

public class TryCode{

 public static bool function(int x, int y, int z){}}

Import Statement

Function Signature

Supplementary
Examples

Instruction

(b) The feedback prompt in iterative interaction stage

Fig. 3. Instances of the Prompts in the Two Stages of the Evaluation Framework

the three initial examples are directly used as tests for code checking. For instance, if the generated
function returns true without doing anything, we consider it to fail because it does not yield the
expected outputs for the last two examples. However, code that passes the checking in first-round
interaction may not always implement the target functionality, because these examples also specify
many other functionalities (e.g., “checking whether the sum of the first two integers is less than or
equal to the third”, “checking whether the three integers are increasing”, or even “checking whether
the first number is 1”). Therefore, it is necessary to supplement new I/O examples to clarify the
target functionality in subsequent iterative interactions. For instance, if the generated code checks
whether the three integers are increasing, the supplementary examples can be (1) function(2, 3,

4) = false, (2) function(1, 2, 5) = false, and (3) function(1, 1, 2) = true.

3.1 First-Round Interaction
The first-round interaction stage focuses on generating code for requirements in the form of only

I/O examples. In other words, we want to know whether an LLM can understand and implement the
requirements described through only I/O examples. To achieve this purpose, the prompts inform
the LLM to generate code according to the given I/O examples, and the code checker uses only the
given I/O examples for testing.
Prompt Design. The prompt at this stage includes four parts: an instruction stating that I/O

examples describe the requirement, a set of I/O examples, using statements, and the function
signature. For instance, the prompt for the running example in the first-round interaction is
presented in Figure 3(a).
Code Checking. The code checking at this stage is implemented through unit testing, where

each test case executes the generated function for one given input, collecting the actual output
and comparing it with the expected one specified in the examples. Any discrepancy indicates a
failure1 in the generation process. After that, the code that passes all the unit tests (i.e., all given
I/O examples) in this stage advances to the next iterative interaction stage.

3.2 Iterative Interaction
The iterative interaction stage focuses on implementing the target functionality from (iteratively

supplemented) I/O examples. For the target functionality, the framework requires reference code
as the ground truth to create expected outputs of new examples. In each iteration, the framework
checks whether the generated code is input-output equivalent to the reference code. If not, the
framework adaptively provides new I/O examples and asks the LLM to modify its generated code.
Prompt Design. In addition to the information contained in the first prompt, the feedback

prompt at this stage also introduces (1) the instruction that indicates that the previously provided I/O
examples do not describe the functionality completely; (2) the supplementary I/O examples where

1Empirically, code with runtime errors (e.g., StackOverflow) or with a running time over 5000ms is also regarded as a failure

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA070. Publication date: July 2025.

An Evaluation of Large Language Models on Iterative Example-Based Code Generation ISSTA070:7

the previously generated code cannot produce the expected outputs. For instance, the feedback
prompt of the running example at this stage is presented in Figure 3(b). During the iterations, this
new prompt is presented to the LLM along with the history of previous conversations.
Code Checking. The code checking at this stage needs to address two questions: (1) whether

the generated code conforms to all the given I/O examples and (2) whether the code implements
the target functionality. To answer the first question, the framework performs unit testing as it
does during the first-round interaction, except that the number of test cases increases beyond the
given examples. Only if the generated code passes all the unit tests does the checking move on. To
answer the second question, the framework tries to find supplementary inputs, which correspond
to different outputs in the target functionality and the currently generated code. Such inputs are
generated in two ways: executing extensive unit testing and invoking a structural test generator.
Extensive unit testing uses test cases constructed from a predefined broader set of I/O examples,
which are currently invisible to the LLM. Furthermore, the framework also employs a structural
test generator [8, 20, 56, 61] to check the generated code, aiming to reduce false positives caused
by incomplete tests. A structural test generator is typically guided by code coverage metrics [8].
To obtain supplementary inputs, the structural test generator tries to achieve full coverage of a
wrapper function, which asserts that the generated code and the reference code have equal outputs.
If no supplementary inputs can be found, we approximately conclude that the generated code can
always produce the same outputs as the target functionality, i.e., the LLM successfully implements
the target functionality. Otherwise, we execute the reference code on each supplementary input to
compose more comprehensive I/O examples, which are then presented to the LLM to clarify the
target functionality.

4 INTERCODE BENCHMARK
We introduce InterCode, our new benchmark designed specifically for evaluating example-based

code generation. InterCode consists of various programming tasks (i.e., target functionalities). To
adapt to the iterative evaluation framework, for each programming task, the benchmark should
include three components: (1) a ground-truth implementation (i.e., reference code) of the target
functionality; (2) a function signature indicating the input-output types; and (3) input constraints
specifying the range of the inputs. In this section, we first list the sources and selection criteria for
the programming tasks, and then describe the construction and usage of the three components.

4.1 Prgramming-Task Collection
InterCode includes programming tasks from two main sources. (1) CodeHunt [6, 60]: a real-world

dataset collected from a high-impact educational gaming platform where each task’s requirement
is presented with only tests (i.e., I/O examples). According to the given tests, the players need
to iteratively modify their code (written in Java or C#) to match the input-output behavior of
an invisible secret function. The programming tasks in CodeHunt are specifically designed for
educational scenarios, including fundamental concepts such as control structures, datamanipulation,
and algorithmic problem solving. (2) HumanEval [12], a well-known benchmark for code generation.
It is a benchmark specifically tailored to Python, comprising a diverse set of programming tasks
accompanied by natural-language statements, I/O examples, and test cases. HumanEval has been
widely used [30] and extended [41, 45] by existing studies, and many LLMs have achieved promising
performance on this benchmark. By involving the programming tasks from HumanEval, we can
further compare LLMs’ code generation capability between natural-language requirements and
I/O-example requirements.
We manually filter the collected programming tasks based on their requirements, excluding

those whose inputs and outputs cannot be represented by simple data structures (e.g., lists with

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA070. Publication date: July 2025.

ISSTA070:8 Yingjie Fu, Bozhou Li, Linyi Li, Wentao Zhang, and Tao Xie

elements of different data types). In total, we obtain 172 programming tasks for example-based
code generation: 24 of these tasks are from CodeHunt, and 148 are from HumanEval.

4.2 Construction
To apply the original CodeHunt and HumanEval benchmark to our framework, it is necessary

to (1) modify the standard answer to the chosen programming language, (2) assign appropriate
function signatures, and (3) specify reasonable input constraints for the functions. Additionally,
for clarity of description, we also simplify the input-output types or the functionalities for some
programming tasks. Specifically, InterCode and our evaluation use C# as the programming language
for code generation.

Ground-Truth Implementation. As a recognized “correct answer” of the target functionality,
the ground-truth implementation plays an important role in both code checking and supplementary
example generation. CodeHunt already provides a C# ground-truth implementation for each
programming task. As for HumanEval, we manually prepare a C# ground-truth implementation
according to the functionality and the given answer written in Python.

Function Signature. Function signatures, consisting of using statements, function names, and
input-output types, are used to compose the prompts. We make the using statements and input-
output types consistent with the ground-truth implementation. Different frommost code-generation
benchmarks, InterCode sets a default function name (i.e., Puzzle) for all programming tasks to avoid
revealing the target functionalities through their function names.

Input Constraints. Explicit input constraints play an important role in iterative evaluation, also
serving as a primary distinction among InterCode and other code-generation benchmarks. Input
constraints are mainly used for input generation, including random generation and structural-
test-generator-based generation (i.e., checking whether the code successfully implements the
target functionality). We ask experienced programmers to specify input constraints based on their
understanding of each target functionality, ensuring that the I/O examples can be brief (fewer than
500 tokens each) and relevant, without compromising the accuracy of the description.2

To cope with the possible bias introduced by random sampling, we prepare five sets of randomly
sampled I/O examples for each programming task for the beginning of executions. The number
of I/O examples presented in each iteration is configurable. Overall, we pre-sample a total of 5
× 10 random I/O examples, of which the currently model-invisible ones will be used for code
checking in iterative interaction. Once the generated code passes all unit tests constructed by
the pre-sampled examples, we adopt a C# structural test generator named Pex [61, 62, 68], whose
configuration by default is to generate tests with high block coverage, for further checking and
supplementary-example generation.

5 EVALUATION SETTING
This section presents the five research questions, introduces the evaluation metrics of each

research question, describes the six evaluated LLMs and their model settings, and shows the results
of preliminary experiments conducted for prompt design.

5.1 ResearchQuestions
RQ1: (Toward O1 in Section 1) How effectively can the LLMs generate code conforming

to all the given I/O examples? Unlike natural-language descriptions, I/O examples not only
appear less frequently in training data, but also have higher diversity. This RQ aims to assess

2Some programming tasks restrict their input to meet complicated structures, which are difficult to represent explicitly
through simple constraints. We manually write the input generators for these tasks.

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA070. Publication date: July 2025.

An Evaluation of Large Language Models on Iterative Example-Based Code Generation ISSTA070:9

whether the LLMs can understand the requirements conveyed through I/O examples by checking
whether the generated code conforms to all the given examples.

RQ2: (Toward O2 in Section 1) With the iteratively supplemented I/O examples, how
effectively can the LLMs generate code for the target functionality? The iteratively and
adaptively supplemented I/O examples place higher demands on the LLMs’ capability to generalize
and understand. Specifically, this RQ aims to evaluate the LLMs’ capabilities to infer the target
functionality from I/O examples and to improve the generated code through iterative feedback.
RQ3: (Impact of natural language) How effectively can combining natural-language

descriptions with I/O examples help improve the LLMs’ score? Although providing perfect
descriptions can be difficult, it is often feasible to provide related but imprecise information about the
functionality. This RQ aims to explore the contribution of natural-language descriptions, especially
those less precise, to example-based code generation for LLMs.

RQ4: (Target-Functionality Analysis) What kinds of functionalities can be implemented
through example-based code generation by the LLMs? The potential difficulty of code genera-
tion for different types of functionalities may vary. Particularly, for example-based code generation,
this difficulty might also be determined by input-output types and the relevant knowledge of the
functionality. This RQ aims to compare the LLMs’ score across different types of functionalities
and understand their strengths and weaknesses. The results may help us extend LLMs to suitable
application scenarios.
RQ5: (Impact of I/O examples) How much is the score of the LLMs affected by the

selection of I/O examples? The difficulty of example-based code generation is related not only to
the target functionality but also to the provided I/O examples. This RQ aims to assess the sensitivity
of the LLMs’ score to the choice of the given I/O examples, and the results may inspire future
prompt engineering.

5.2 Metrics
We adopt the Pass@k metric [12] (with 𝑘’s value of 1, 5, and 10, respectively), which measures

the ability of an LLM to generate at least one correct code within 𝑘 attempts, as the primary
metric to evaluate LLMs’ capability on example-based code generation. Particularly, the decision of
successful code generation differs in first-round interaction and iterative interaction. As shown
in Figure 4, the evaluation starting from an initial set of I/O examples is called an 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛. For
first-round interaction (RQ1), we set the total number of samples as 10 (𝑛 = 10, i.e., making 10
attempts to generate code) in each execution. We consider the generated code in one attempt
correct if it passes all the given tests constructed for the given I/O examples. During the subsequent
iterative interaction, we take the code that passes the first-round interaction as a starting point,
asking the LLM to improve the code according to the conversation history and newly generated
feedback (i.e., supplementary I/O examples), obtaining one answer each time. If an LLM finally
succeeds in generating code for the target functionality during the iteration, we consider the
attempt a successful one in the iterative interaction.
Additionally, to investigate how the number of I/O examples affects the correctness of code

generation, we set the number of presented examples (Number of Examples, 𝑁𝑜𝐸) in each iteration
to 3, 5, 7, and 10, respectively. Particularly, if the supplementary examples are generated through
the structural test generator, we directly present all new examples to the LLM.

5.3 Evaluated LLMs and Model Settings
We evaluate five state-of-the-art open-source LLMs (Gemma [58], CodeGemma [57], DeepSeek-

Coder [25], Llama2 [63], and CodeLlama [21]) and one close-source LLM (GPT-4o-mini [49]).

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA070. Publication date: July 2025.

ISSTA070:10 Yingjie Fu, Bozhou Li, Linyi Li, Wentao Zhang, and Tao Xie

. . .

Pass@k for
First-Round Interaction (FRI)

Pass@k for Iterative Interaction (II)

. . .

. . .

.

One Execution

R
ou

nd
s

of
 It

er
at

io
ns

.

. . .

. . .

Success

Failure

Unknown

FRI: passes all the tests constructed
for the given I/O examples.

II: successfully implements the
target functionality.

Fails on any test constructed for
the given examples
Passes all the tests constructed for
the given I/O examples, but does not
implement the target functionality.

Number of Attempts (n)

Fig. 4. Metrics of the Iterative Evaluation Framework

• DeepSeek-Coder [25]: A code generation model pre-trained from scratch on 2 trillion
tokens of bilingual (English/Chinese) data, featuring an 87% code and 13% natural-language
composition. The model is further instruction-tuned on 2 billion tokens of task-specific data.

• Gemma [58] and CodeGemma [57]: The Gemma foundation model utilizes training data
comprising English web documents, mathematical content, and code. Its code-specialized
variant CodeGemma incorporates 500B-1T additional tokens of programming data and
mathematical problem-solving content.

• Llama2 [63] and CodeLlama [21]: Built upon the Llama2 architecture pre-trained on 2
trillion tokens of diverse open-source data, CodeLlama extends this foundation with 500B-1T
tokens of domain-specific programming language data for code comprehension tasks.

• GPT-4o-mini [49]: GPT-4o-mini is a compact version of the GPT-4o model released by
OpenAI. It is more intelligent than the previously widely evaluated GPT-3.5-turbo and is
designed to achieve higher performance utilizing fewer computational resources.

All six LLMs have been widely evaluated on code generation tasks [40]. Additionally, the chosen
open-source LLMs cover models obtained from three different training techniques: the base models,
code models that are fine-tuned on code data from the base models, and models trained from scratch
on code data. For open-source LLMs, we evaluate their 7B (or nearly 7B) versions for three main
purposes: (1) fairly comparing the performance of different models by eliminating the effect of
model size, (2) striking a balance between computational resources and model representativeness,
and (3) making our experiments easy to reproduce even for researchers facing resource constraints.
Specifically, for DeepSeek-Coder, we choose deepseek-coder-6.7b-instruct3 for evaluation; for
Gemma and CodeGemma, we choose gemma-7b-it4 and codegemma-7b-it5, respectively; for Llama2
and CodeLlama, we choose llama-2-7b-chat6 and codellama-7b-instruct7, respectively.
Model Settings: For the open-source LLMs, we configure the data type to torch.bfloat16,

do_sample = True, num_return_sequences=10, and leave other parameters as recommended (e.g.,
temperature is by default set to 1.0). For GPT-4o-mini, we call the official API and make other
parameters consistent with the open-source LLMs.
3https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-instruct
4https://huggingface.co/google/gemma-7b-it
5https://huggingface.co/google/codegemma-7b-it
6https://huggingface.co/meta-llama/Llama-2-7b-chat-hf
7https://huggingface.co/codellama/CodeLlama-7b-Instruct-hf

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA070. Publication date: July 2025.

An Evaluation of Large Language Models on Iterative Example-Based Code Generation ISSTA070:11

Table 1. The Average pass@k of Each LLM in First-Round Interaction

𝑁𝑜𝐸=3 𝑁𝑜𝐸=5 𝑁𝑜𝐸=7 𝑁𝑜𝐸=10
k=1 k=5 k=10 k=1 k=5 k=10 k=1 k=5 k=10 k=1 k=5 k=10

GPT-4o-mini 0.31 0.49 0.55 0.29 0.44 0.49 0.28 0.42 0.47 0.27 0.40 0.45
deepseek-coder-6.7b-instruct 0.18 0.35 0.42 0.16 0.32 0.38 0.15 0.29 0.35 0.14 0.28 0.34

gemma-7b-it 0.11 0.21 0.25 0.09 0.18 0.21 0.07 0.15 0.18 0.06 0.14 0.17
codegemma-7b-it 0.13 0.33 0.43 0.10 0.28 0.37 0.09 0.26 0.35 0.08 0.23 0.31
Llama-2-7b-chat 0.09 0.26 0.33 0.07 0.21 0.29 0.06 0.18 0.26 0.05 0.15 0.21

CodeLlama-7b-Instruct 0.10 0.26 0.33 0.09 0.22 0.29 0.08 0.21 0.27 0.07 0.18 0.23

Table 2. The Average pass@k of Each LLM in Iterative Interaction

𝑁𝑜𝐸=3 𝑁𝑜𝐸=5 𝑁𝑜𝐸=7 𝑁𝑜𝐸=10
k=1 k=5 k=10 k=1 k=5 k=10 k=1 k=5 k=10 k=1 k=5 k=10

GPT-4o-mini 0.16 0.26 0.30 0.16 0.27 0.31 0.16 0.27 0.31 0.16 0.26 0.32
deepseek-coder-6.7b-instruct 0.09 0.18 0.22 0.10 0.19 0.23 0.10 0.19 0.23 0.10 0.20 0.24

gemma-7b-it 0.03 0.05 0.07 0.03 0.06 0.07 0.03 0.05 0.06 0.03 0.05 0.07
codegemma-7b-it 0.02 0.07 0.11 0.03 0.08 0.12 0.03 0.08 0.12 0.03 0.08 0.11
Llama-2-7b-chat 0.01 0.02 0.03 0.01 0.02 0.04 0.00 0.02 0.04 0.00 0.02 s0.03

CodeLlama-7b-Instruct 0.03 0.08 0.12 0.04 0.09 0.13 0.03 0.10 0.13 0.03 0.09 0.12

5.4 Prompt Design
To determine appropriate prompts (which may have a non-negligible impact on LLMs’ per-

formance [2]), we first conduct a preliminary experiment with the five open-source LLMs on
the 24 target functionalities drawn from CodeHunt. The preliminary experiment compares the
original manually designed prompt with three variants: COT (Chain of Thought) [72], Persona
(assigning a specific role with its perspective to LLMs) [66], and Few-shot Learning [7].8 We adopt
the same model configuration as the subsequent experiments, except that only three I/O examples
are provided in the prompts. We find that the score ranking between the five LLMs is roughly
the same under the different prompt variants. For sub-objective1 (i.e., conforming to the given
I/O examples), the score under the original prompt is overall slightly lower than that under the
Persona variant, but still better than that under the other two prompt variants. For sub-objective2
(i.e., implement the target functionality), the score under the original prompt is overall higher than
that under all three other prompt variants. The preliminary experiment illustrates that for iterative
example-based code generation, simply adopting the three prompt variants cannot contribute to an
obvious improvement for the LLMs. Therefore, we decide to use the manually designed original
prompts in the subsequent experiments.

6 RESULTS AND ANALYSIS
RQ1: How effectively can the LLMs generate code conforming to all the given I/O exam-
ples?

Considering only the tests constructed for the given I/O examples, the average pass@k of each
LLM in first-round interaction is presented in Table 1, where the best numbers among all the LLMs
and those among the open-source LLMs are bolded. As the results show, all the LLMs demonstrate
their capabilities, which still have room for improvement, in generating code conforming to all
the given I/O examples. GPT-4o-mini outperforms all the evaluated open-source LLMs, achieving

8The illustrations of each prompt variant and the results can be found in our project website [18].

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA070. Publication date: July 2025.

ISSTA070:12 Yingjie Fu, Bozhou Li, Linyi Li, Wentao Zhang, and Tao Xie

1 // TryCode.Puzzle (17) = 34

2 // TryCode.Puzzle (35) = 52

3 // TryCode.Puzzle (-21) = -4

4 using System.Collections.Generic;

5 using System;

6
7 public class TryCode

8 {

9 public static int Puzzle(int x)

10 {

11 return (x * x - 10) % 100;

12 }

13 }

(a) An Instance of Code Generated by CodeLlama

1 // TryCode.Puzzle (17) = 34

2 // TryCode.Puzzle (35) = 52

3 // TryCode.Puzzle (-21) = -4

4 using System;

5 using System.Collections.Generic;

6 public class TryCode{

7 public static int Puzzle(int x){

8 if (x == 17) return 34;

9 if (x == 35) return 52;

10 if (x == -21) return -4;

11 return 0; // default return

12 }

13 }

(b) An Instance of Code Generated by Llama-2

Fig. 5. Different Programming “Preference” of Llama-2-7b-chat and CodeLlama-7b-Instruct

an average pass@10 ranging from 0.45 to 0.55. In contrast, the average pass@10 score of all the
evaluated open-source LLMs is below 0.45, and as for pass@1, the average score sometimes even
goes below 0.1. At the same time, the average pass@k score of all LLMs decreases as the number of
the given I/O examples increases.
Surprisingly, additional code-related training does not always obviously improve performance

in our evaluation. Codegemma-7b-it substantially surpasses its base model (gemma-7b-it), and yet
CodeLlama-7b-Instruct’s score is very close to that of its base, Llama-2-7b-chat. Analyzing the
15 cases where Llama-2-7b-chat most outperforms CodeLlama-7b-Instruct reveals differing code
generation “preferences”. Llama-2-7b-chat tends to perform input matching, directly generating
conditional statements from the I/O examples without inferring input-output relationships. Con-
versely, CodeLlama-7b-Instruct attempts to deduce these relationships, but these deductions often
fail to satisfy even the provided I/O examples. Figure 5 illustrates this observation: Llama-2-7b-chat
uses separate if statements to match each I/O example, while CodeLlama-7b-Instruct incorrectly
proposes an arithmetic expression (intended to be x+17) that fails all the given examples.

To identify the effect of input-matching behavior on the results, we use string checking to filter
the code that performs input matching, finding that all the LLMs may generate code performing
input matching. The largest proportion of such code is found in that generated by Llama-2-7b-chat,
while in the code generated by deepseek-coder-6.7b-instruct and gemma-7b-it, the percentage is
considerably smaller.

Summary of RQ1

Overall Assessment: All the LLMs struggle to consistently generate code that conforms to
all the given I/O examples. Moreover, the score of code generation decreases as the number
of the given examples increases.
Model Comparison: GPT-4o-mini outperforms all the open-source LLMs, and deepseek-
coder-6.7b-instruct leads among the open-source LLMs.
Special-Case Analysis: Given I/O examples, all the LLMs may generate code that simply
performs input matching. Llama-2-7b-chat is the most severe over the LLMs.

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA070. Publication date: July 2025.

An Evaluation of Large Language Models on Iterative Example-Based Code Generation ISSTA070:13

Table 3. The Average pass@k of Each LLM When Given Natural-Language Descriptions and
Human-Designed Examples

LLM k=1 k=5 k=10 LLM k=1 k=5 k=10
GPT-4o-mini 0.84 0.90 0.90 codegemma-7b-it 0.47 0.73 0.80

deepseek-coder-6.7b-instruct 0.65 0.86 0.88 Llama-2-7b-chat-hf 0.19 0.29 0.33
gemma-7b-it 0.29 0.45 0.52 CodeLlama-7b-Instruct 0.33 0.61 0.69

0 1 2 3 4
Iteration Rounds

0

50

100

150

200

250

300

98.0 101.0

211.0

257.0

29.0 30.0

92.0 96.0

175.0

189.0

57.0 57.0

NoE = 3

0 1 2 3 4
Iteration Rounds

0

50

100

150

200

250

300

111.0 114.0

226.0

267.0

27.0 31.0

91.0

105.0

194.0
200.0

60.0 60.0

NoE = 5

0 1 2 3 4 5
Iteration Rounds

0

50

100

150

200

250

300

112.0 115.0

231.0

266.0

32.0 33.0

88.0
101.0

196.0 199.0

54.0 54.0

NoE = 7

0 1 2 3 4
Iteration Rounds

0

50

100

150

200

250

300

102.0 103.0

243.0

270.0

27.0 27.0

94.0 97.0

209.0 209.0

59.0 59.0

NoE = 10

Models

CodeLlama-7b-Instruct

GPT-4o-mini

Llama-2-7b-chat

codegemma-7b-it

deepseek-coder-6.7b-instruct

gemma-7b-it

Fig. 6. The Cumulative Number of Successful Executions during Iterative Interaction

RQ2: With the iteratively supplemented I/O examples, how effectively can the LLMs
generate code for the target functionality?

Table 2 shows the pass@k of all the LLMs within five rounds of iteration, where the best numbers
among all the LLMs and those among the open-source LLMs are bolded. For comparison, we
also evaluate these LLMs when the target functionality is described through its original prompts
(including natural-language description and some human-designed I/O examples) and the score is
presented in Table 3. According to the results, we can see that the pass@k score no longer decreases
monotonically with the number of the given examples in each round. Compared to the score of
executions where natural-language descriptions are given, all the LLMs experience an obvious
decline. Even the average pass@1 score of GPT-4o-mini is less than 0.2. Particularly, the pass@1
score of Llama-2-7b-chat is approaching 0, illustrating that it is difficult for this LLM to correctly
infer functionalities from I/O examples. The ranking among all the LLMs is roughly consistent
with that in RQ1, but the distinction among the open-source LLMs becomes higher. GPT-4o-mini is
still the best, outperforming all the open-source LLMs. deepseek-coder-6.7b-instruct is the best of
all the open-source LLMs, followed by codegemma-7b-it and CodeLlama-7b-Instruct. Interestingly,
the advantage of CodeLlama-7b-Instruct over Llama-2-7b-chat is markedly greater than that of
codegemma-7b-it over gemma-7b-it.

To visualize the change in score during the iteration, Figure 6 counts the number of executions
in which the target functionality has been successfully implemented after each round of iteration,
out of a total of 172 × 5 = 860 executions. First, we can see that the evaluated LLMs exhibit obvious
differences after the first iteration, indicating their varying capabilities in inferring the target
functionality from I/O examples: GPT-4o-mini performs the best, deepseek-coder-6.7b-instruct
is superior to other open-source LLMs, and Llama-2-7b-chat achieves the least success. Second, it is
also worth noting that all the LLMs progress most in the initial one or two rounds, indicating that
in most cases, these LLMs can hardly successfully improve the code according to iterative

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA070. Publication date: July 2025.

ISSTA070:14 Yingjie Fu, Bozhou Li, Linyi Li, Wentao Zhang, and Tao Xie

Table 4. The Comparison between Combining I/O Examples with Different Granularity of Natural Language

First-Round Interaction Iterative Interaction
Only I/O I/O + Keywords I/O + full NL Only I/O I/O + Keywords I/O + full NL

GPT-4o-mini 0.49 0.61 0.92 0.26 0.45 0.88
deepseek-coder-6.7b-instruct 0.35 0.51 0.88 0.18 0.37 0.83

gemma-7b-it 0.21 0.25 0.49 0.05 0.11 0.32
codegemma-7b-it 0.33 0.45 0.80 0.07 0.24 0.69
Llama-2-7b-chat-hf 0.26 0.30 0.41 0.02 0.09 0.26

CodeLlama-7b-Instruct 0.26 0.37 0.69 0.08 0.20 0.57

feedback. Specifically, for GPT-4o-mini, about ninety percent of the executions succeed within the
first two rounds of iteration. As for most of the open-source LLMs, the iteratively supplemented
I/O examples (after the first round) contribute to new success on no more than 10 executions. We
also analyze the proportion of errors occurring in all executions. The most frequent error is “fail in
the given tests”, indicating that as the number of iteration rounds increases, the LLMs struggle to
generate code that satisfies all the given I/O examples.

Summary of RQ2

Overall Assessment: Generating code with (iteratively supplemented) I/O examples
remains a challenging task for all the evaluated LLMs. Even for those successful executions,
the majority of successful code generation is achieved in the first round of the iterative
process.
Model Comparison: GPT-4o-mini still outperforms all the evaluated LLMs. Deepseek-
coder-6.7b-instruct outperforms other open-source LLMs, benefiting mainly from its supe-
rior capability in “inferring the target functionality from I/O examples”.

RQ3: How effectively can combining natural-language descriptions with I/O examples
help improve the LLMs’ score?
To evaluate the influence of natural-language descriptions, we evaluate the LLMs on prompts

combining I/O examples with two different granularities (i.e., full descriptions and keywords) of
natural-language descriptions, and then calculate their pass@5 score. Unlike full descriptions, the
keywords for each target functionality point out only the general direction but do not tell the
details (e.g., for the full description “return x+17”, the keyword is “Arithmetic Operation”). The
results are given in Table 4, where the best numbers among all the LLMs and those among the
open-source LLMs are bolded.
From Table 4, we can see that combining natural-language descriptions with I/O examples can

greatly improve the LLMs’ score, and the improvement is more pronounced in iterative interaction
than in first-round interaction. At the same time, even without precise descriptions, relevant
keywords of the functionality can still lead to considerable improvement. For open-source LLMs in
iteration interaction, including keywords in the prompts can even help double the score.

Summary of RQ3

Combining natural-language descriptions with I/O examples can greatly improve the
LLMs’ performance. Furthermore, when precise descriptions are unavailable, even related
keywords can also enhance the score.

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA070. Publication date: July 2025.

An Evaluation of Large Language Models on Iterative Example-Based Code Generation ISSTA070:15

NL-Succeed

NL-Fail
53%

38%
GPT-4o-mini

NL-Succeed

NL-Fail
49%

10%
deepseek-coder-6.7b-instruct

NL-Succeed

NL-Fail
26%

6%
gemma-7b-it

NL-Succeed

NL-Fail
39%

24%
codegemma-7b-it

0 20 40 60 80 100 120 140
Number of Functionalities

NL-Succeed

NL-Fail
36%

5%
Llama-2-7b-chat

0 20 40 60 80 100 120 140
Number of Functionalities

NL-Succeed

NL-Fail
41%

19%
CodeLlama-7b-Instruct

Fig. 7. The Success Rate of Functionalities with Different Difficulties

RQ4: What kinds of functionalities can be implemented through example-based code
generation by the LLMs?
To answer RQ4, we categorize the target functionalities from three dimensions: programming

difficulty, input-output types, and related knowledge. First, to categorize the difficulty of func-
tionalities, we take “whether a specific functionality can be successfully implemented given a
natural-language description” as the reference, yielding two categories: NL-Succeed and NL-Fail.
Specifically, given the natural-language descriptions, if a model correctly implements the functional-
ity in at least one out of ten generations, the functionality is categorized as NL-Succeed. Otherwise,
it is categorized as NL-Failure. It is important to note that due to the varying capabilities of LLMs,
the categorization regarding difficulties also varies across different LLMs. Second, the input-output
types of functionalities are determined by the function signature, including five categories: int,
string, double, array (with elements of any type), and boolean. Because each functionality may
have multiple inputs, it may be categorized into multiple possible categories as well. Third, the
relevant knowledge of functionalities is manually labeled, and each functionality may correspond
to multiple labels.

To visualize the results, we use horizontal bar charts to present the success rate in each category.
For one functionality, if a model succeeds in any of the five executions, we regard the functionality
as successfully implemented. The length of the bar reflects the number of target functionalities, and
the shaded portion indicates those successfully implemented from I/O examples. The proportion
of successfully implemented functionalities is represented by the numbers adjacent to the shaded
portion.
The success rate of functionalities with different difficulties is shown in Figure 7. For all the

evaluated LLMs, the majority of functionalities that can be implemented from I/O examples fall
within the NL-Succeed category, but not all functionalities within this category can be implemented
according to I/O examples. Even for the best model GPT-4o-mini, more than 40% of the code in the
NL-Succeed category cannot be implemented using I/O examples. We also observe that although
the number of functionalities in deepseek-coder-6.7b-instruct’s NL-Succeed category is close to that
of GPT-4o-mini, the success rate of example-based code generation in this category is much lower
than that of GPT-4o-mini. Overall, the results confirm our hypothesis that generating code from
I/O examples is a more challenging task than generating code from natural-language descriptions.

Additionally, functionalities that cannot be implemented based on natural-language descriptions
but can be implemented according to I/O examples catch our interest. By manually inspecting these
functionalities, we find that most of them (e.g., HumanEval-41) have the following characteristics:
the natural-language descriptions introduce additional information that makes it even difficult to
comprehend, but the relationships between inputs and outputs are straightforward or enumerable.

The success rate of functionalities with different input-output types is shown in Figure 8. We
find that GPT-4o-mini, deepseek-coder-6.7b-instruct, and gemma-7b-it achieve their best results on

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA070. Publication date: July 2025.

ISSTA070:16 Yingjie Fu, Bozhou Li, Linyi Li, Wentao Zhang, and Tao Xie

boolean

array

double

string

int

50%

46%

44%

62%

51%

GPT-4o-mini

boolean

array

double

string

int

50%

43%

50%

59%

38%

deepseek-coder-6.7b-instruct

boolean

array

double

string

int

15%

18%

19%

23%

13%

gemma-7b-it

boolean

array

double

string

int

47%

32%

38%

44%

32%

codegemma-7b-it

0 20 40 60 80 100 120 140
Number of Functionalities

boolean

array

double

string

int

29%

12%

0%

19%

18%

Llama-2-7b-chat

0 20 40 60 80 100 120 140
Number of Functionalities

boolean

array

double

string

int

47%

36%

19%

44%

27%

CodeLlama-7b-Instruct

Fig. 8. The Success Rate of Functionalities with Different Input-Output Types

Array Manipulation

Math

String Manipulation

Sorting

Complex Manipulation

42%

52%

58%

45%

0%

GPT-4o-mini

Array Manipulation

Math

String Manipulation

Sorting

Complex Manipulation

39%

45%

53%

45%

20%

deepseek-coder-6.7b-instruct

Array Manipulation

Math

String Manipulation

Sorting

Complex Manipulation

16%

13%

23%

20%

20%

gemma-7b-it

Array Manipulation

Math

String Manipulation

Sorting

Complex Manipulation

32%

37%

41%

20%

20%

codegemma-7b-it

0 10 20 30 40 50 60 70 80
Number of Functionalities

Array Manipulation

Math

String Manipulation

Sorting

Complex Manipulation

12%

14%

19%

5%

20%

Llama-2-7b-chat

0 10 20 30 40 50 60 70 80
Number of Functionalities

Array Manipulation

Math

String Manipulation

Sorting

Complex Manipulation

32%

30%

39%

30%

20%

CodeLlama-7b-Instruct

Fig. 9. The Success Rate of Functionalities with Different Related Knowledge

functionalities with string-type inputs or outputs, and the other three LLMs achieve their best results
with boolean types. Particularly, despite being inferior to GPT-4o-mini overall, deepseek-coder-
6.7b-instruct outperforms GPT-4o-mini in the category of functionalities involving double-type
inputs or outputs.

The success rate of functionalities with different related knowledge is shown in Figure 9. We
find that all the LLMs exhibit the highest success rate in functionalities related to string manipula-
tion. The second-highest success rate falls in categories related to math and array manipulation.
Particularly, for one of the functionalities related to complex manipulation (i.e., manipulations of
complex data structures such as trees, graphs, and hash tables), the open-source LLMs outperform
GPT-4o-mini.

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA070. Publication date: July 2025.

An Evaluation of Large Language Models on Iterative Example-Based Code Generation ISSTA070:17

0.00 0.05 0.10 0.15 0.20 0.25
Variance

0

1

2

3

4

5

6

Ke
rn

el
 D

en
si

ty
 E

st
im

at
e 0.02

0.17

0.04

0.16

GPT-4o-mini
deepseek-coder-6.7b-instruct

(a) Score Variance on Different Sets of I/O Examples

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Impact Values

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Ke
rn

el
 D

en
si

ty
 E

st
im

at
e

0.00

0.25

0.01

0.23

0.45

GPT-4o-mini
deepseek-coder-6.7b-instruct

(b) Impact Values of Common Examples

Fig. 10. Analysis on the Impact of Different I/O Examples

Summary of RQ4

Regarding programming difficulty, the LLMs tend to achieve higher success rates on func-
tionalities that (1) can be successfully implemented according to natural-language descrip-
tions, or (2) have an easy-to-catch relationship between the input and output. Regarding
input-output types, the LLMs perform the best on functionalities with string-type or boolean-
type inputs and outputs. Regarding related knowledge, the evaluated LLMs achieve their
highest success rates on functionalities related to string manipulation.

RQ5: How much is the score of LLMs affected by the selection of I/O examples?
According to the conclusions from RQ2, the first prompt plays a crucial role in this iterative code

generation process. Therefore, the analysis of this RQ mainly focuses on the impact of the examples
provided in the first round. Specifically, for the best-performing GPT-4o-mini and deepseek-coder-
6.7b-instruct, we collect their pass@5 score of the five executions (starting from different sets of I/O
examples, with 10 attempts in each execution) for the same target functionalities, and calculate their
variance. Note that if an LLM does not succeed in any of the five executions, the corresponding
target functionality is not included.

The distribution of the variance is presented by a kernel density estimate plot in Figure 10(a). We
observe a bimodal structure for both deepseek-coder-6.7b-instruct and GPT-4o-mini. The primary
peak of the variance density falls between (0.00, 0.05), indicating that for a large portion of the
functionalities, the two LLMs both have close pass@5 scores on different I/O-example sets. We also
notice some functionalities for which the variance lies between (0.15, 0.2) (corresponding to the
secondary peak). For these functionalities, providing appropriate I/O examples in the prompts may
be helpful for code generation.
We try to identify the single I/O examples with high impact on the score. Specifically, for each

I/O example appearing in more than one initial example set, we collect the average score when
the example is and is not included, respectively, and calculate the difference between the scores.
This difference, serving as the impact value, is used to quantify the impact of a particular I/O
example on the code-generation score, and its distribution is shown in Figure 10(b). A higher impact
value implies that the I/O example has a greater impact on the final score. According to the figure,
we find that the impact values of I/O examples show similar distributions for GPT-4o-mini and
deepseek-coder-6.7b-instruct. Although most I/O examples have impact values close to 0, there

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA070. Publication date: July 2025.

ISSTA070:18 Yingjie Fu, Bozhou Li, Linyi Li, Wentao Zhang, and Tao Xie

are still a considerable number of I/O examples with impact values around 0.25. Particularly, our
analysis also identifies about 10 I/O examples with impact values greater than 0.4. Identifying
such I/O examples with high impact value in advance may be an important direction for future
improvements through prompt engineering.

Summary of RQ5

In addition to functionality-related characteristics, the LLMs’ score is also affected by the
selection of I/O examples provided in prompts. Including high-impact examples may bring
an improvement to the score.

7 RECOMMENDATION
This section presents recommendations for enhancing LLM-driven code generation according to

the evaluation results obtained in our work. For LLM developers, we suggest directions to improve
LLMs for code generation; for users, we provide strategies to better utilize LLMs for code generation.

7.1 Directions for Improving LLMs
Supporting diverse formats of requirements. Current research on LLMs for code generation

tasks uses natural language as the main format to describe the target functionalities. However,
suitable natural-language descriptions are not always available in real life, because the target
functionalities can be unknown (e.g., for reverse engineering tasks) or difficult to describe clearly
(e.g., for end-users without sufficient programming knowledge). In this study, we describe the
functionalities mainly by I/O examples, which are unambiguous and easily accessible, finding that
LLMs still struggle to generate code conforming to the given I/O examples. This finding suggests
that LLMs currently do not support the I/O-example-form of the descriptions very well. Therefore,
we propose to focus more on and improve LLMs’ code-generation capability in other forms of
requirement description besides natural language. Doing so can help not only comprehensively
understand the capability boundary of LLMs but also extend LLM-based code generation to more
application scenarios.

Supporting multi-turn and iteratively given requirements. It is not rare to see that single-
turn given requirements are not sufficient to describe the target functionalities completely. This
study, which provides I/O examples for the target functionalities, faces the same situation. However,
after introducing iteratively supplemented I/O examples, we find that the LLMs can hardly effectively
utilize them. In most cases, the generated code either fails to simultaneously satisfy the examples
given in multiple turns, or is influenced by past answers, simply adding special cases to adapt to
new I/O examples. Therefore, we suggest paying attention to LLMs’ code-generation capability
with multi-turn requirements, especially the capability to integrate multi-turn requirements and
effectively utilize feedback.

7.2 Strategies to Better Utilize LLMs
The findings of this study also shed light on the usage strategies for users hoping to directly

utilize LLMs for programming tasks. These strategies are also useful for other similar tasks that
may need multi-turn given requirements.
Valuing early prompts. Our evaluation of LLMs reveals that in iterative example-based code

generation, early (especially the first) prompts play a crucial role in ultimately implementing the
target functionality correctly. Therefore, when applying LLMs to iterative example-based code
generation, we should emphasize the design of the first prompt, instead of relying too much on

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA070. Publication date: July 2025.

An Evaluation of Large Language Models on Iterative Example-Based Code Generation ISSTA070:19

making supplements and corrections in subsequent interactions. One possible idea is to choose I/O
examples that are as representative (whose definition remains to be explored) as possible in the first
prompt while adding special cases in subsequent prompts.

Rebooting timely. Considering that LLMs may not be able to effectively utilize the multi-turn
given requirements, when the number of iteration rounds increases to a certain threshold, restarting
the conversation may be a better option than continuing with iterations. When restarting, the
prompts provided in the completed iterations need to be re-selected and recombined to construct
the new initial prompt, aiming to improve the accuracy of code generation.

Providing relevant natural-language information (even being inaccurate). The evaluation
demonstrates that combining I/O examples with domain-related keywords (i.e., terms indicating
functionality directions without detailed steps) can improve LLMs’ performance. Therefore, when
good natural-language descriptions are not available, a feasible improvement is to provide the LLM
with keywords related to the target functionalities. Even if these keywords are not accurate, they
are still likely to be of great help.

8 RELATEDWORK
The significant progress of LLMs in code generation has also propelled the research to eval-

uate their capabilities. Recently, many efforts have been made to evaluate LLMs from different
programming languages, different difficulty levels, and different applications.

Benchmarks of different programming languages.Benchmarks on Python code [3, 12, 28, 34]
make up a large part of existing efforts. In addition to Python, researchers have also constructed
benchmarks for other widely used programming languages (e.g., AixBench [27] for Java) and
domain-specific languages (e.g., BIRD [36] for SQL). Multiple-E [10] includes programs written by
18 programming languages in addition to Python.

Benchmarks of different difficulty levels. Existing benchmarks consider programming
problems from entry-level to industrial-level. MBPP [3] is designed with hundreds of entry-level
problems, e.g., numeric manipulations. HumanEval [12] includes 164 human-written programming
problems from introductory to interview style and is relatively easy. APPS [28], CodeContests [39],
TACO [37] etc., contain problems that aremore difficult and competitive. In addition to the preceding
function-level benchmarks, researchers have also explored LLMs with programming problems that
are more complex but also more pragmatic. ClassEval [16] is constructed to evaluate class-level
code generation. CoderEval [70] is constructed for the evaluation of non-standalone functions.
RepoBench [42] and RepoEval [71] consider the evaluation of repository-level code auto-completion.
Benchmarks of different applications. There are some benchmarks concerning code gen-

eration for specific applications. Methods2test [64] and Test4J [33] care about the capability of
generating test cases. SWE-Bench [32] and HumanEval-Java [31] evaluate LLMs on generating
patches for existing programs. AVATAR [1] and XLCoST [73] are constructed for code translation,
facilitating the evaluation of cross-lingual code intelligence.

Unlike most existing studies using natural-language descriptions to present the target functional-
ities, our evaluation presents the target functionalities through only (iteratively supplemented) I/O
examples. Similarly, Li et al. [38] evaluate the capabilities of large models on three domain-specific
code generation tasks, but the examples that they provide to the LLMs are given all at once, still
suffering from incomplete descriptions. As the first work formalizing programming functionalities
into iteratively supplementary I/O examples, our evaluation framework and benchmark can also
be used to evaluate the capability to implement multi-turn-provided requirements.

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA070. Publication date: July 2025.

ISSTA070:20 Yingjie Fu, Bozhou Li, Linyi Li, Wentao Zhang, and Tao Xie

9 THREATS TO VALIDITY
Construct Validity. The term example-based code generation may also be associated with program-
ming by demonstration [13], where programmers (usually the end users) demonstrate operations
on example data, and the computer records and generalizes these operations with programs. In this
paper, we restrict the definition of examples to the input-output pairs of the target functionality.
The evaluation takes pass@k as the primary metric, which mainly concerns correctness but does
not fully reflect code quality, such as readability and maintainability. To enable further investigation
in the community, we open-source all the generated code collected in our experiments.
Internal / External Validity. (1) Dataset Bias: the distribution of (the types of) target functionalities
is biased and may affect the final evaluation results, although the considered functionalities are all
derived from widely used benchmarks for code generation. To mitigate this threat, in Section 6
(RQ3), we separately compare different LLMs on each type of functionality. (2) Model Configuration:
different hyperparameters across different models may also result in variations in performance. In
our evaluation, we adopt the default parameters for all the evaluated models and explicitly point
out all other parameters used in the experiments. (3) Tool Reliability: in our evaluation framework,
due to the discrepancies in the C# versions supported by tools, in very few cases, correct code can
be determined as failures after compilation. To mitigate this threat, we manually check and correct
the compilation results as thoroughly as possible. (4) Generalizability: the evaluation considers only
code written in C# language, and the conclusions may not be applicable to other programming
languages, especially those that are less widely used or are domain-specific. As one of the most
commonly used programming languages in natural distribution, C# is also widely considered in
the evaluation for code generation [43]. Therefore, we believe that the evaluation against C# code
is representative. Additionally, with acceptable engineering efforts and tool support, the evaluation
framework in this paper can also be extended to support other programming languages.
Conclusion Validity. The interpretation of results may be affected by subjective judgment, espe-
cially for those requiringmanual inspections. Tomitigate this threat, we involvemultiple researchers
to conduct the result analysis and cross-validation.

10 CONCLUSION
In this paper, we have presented a comprehensive study of six large language models (LLMs) on

example-based code generation. We have found that GPT-4o-mini and DeepSeek-Coder perform
the best, both in generating code that satisfies given input-output examples and in inferring the
target functionality. However, the LLMs still struggle when the target functionality is defined solely
through input-output examples, because of the difficulties in both understanding the requirements
and in effectively using iterative feedback. We also discussed the impact of the type of target
functionalities, the selection of input-output examples, and the introduction of natural-language
descriptions, as an exploration of potential improvements. Through the comprehensive assessment
and analysis, this study reveals the limitations of LLMs on example-based code generation, calls
for more support of diverse forms of requirement descriptions, and emphasizes the importance of
early prompts in the code generation tasks described through iterative conversations.

11 DATA AVAILABILITY
We open-source our data and evaluation results on our project website [18].

12 ACKNOWLEDGMENT
This work was partially supported by National Natural Science Foundation of China under Grant

No. 92464301.

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA070. Publication date: July 2025.

An Evaluation of Large Language Models on Iterative Example-Based Code Generation ISSTA070:21

REFERENCES
[1] Wasi Ahmad, Md Golam Rahman Tushar, Saikat Chakraborty, and Kai-Wei Chang. 2023. AVATAR: A Parallel Corpus

for Java-Python Program Translation. In Findings of the 2023 Association for Computational Linguistics. 2268–2281.
https://doi.org/10.48550/arXiv.2108.11590

[2] Toufique Ahmed, Kunal Suresh Pai, Prem Devanbu, and Earl T. Barr. 2024. Automatic Semantic Augmentation of
Language Model Prompts (for Code Summarization). In Proceedings of the 2024 IEEE/ACM International Conference on
Software Engineering. 1–13. https://doi.org/10.48550/arXiv.2304.06815

[3] Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan, Ellen Jiang, Carrie
Cai, Michael Terry, Quoc Le, et al. 2021. Program Synthesis with Large Language Models. https://doi.org/10.48550/
arXiv.2108.07732

[4] M Balog, AL Gaunt, M Brockschmidt, S Nowozin, and D Tarlow. 2017. DeepCoder: Learning to Write Programs. In
Proceedings of the 2017 International Conference on Learning Representations. https://doi.org/10.48550/arXiv.1611.01989

[5] Shaon Barman, Sarah Chasins, Rastislav Bodik, and Sumit Gulwani. 2016. Ringer: Web Automation by Demonstration.
In Proceedings of the 2016 ACM SIGPLAN International Conference on Object-Oriented Programming, Systems, Languages,
and Applications. 748–764. https://doi.org/10.1145/2983990.2984020

[6] Judith Bishop, R. Nigel Horspool, Tao Xie, Nikolai Tillmann, and Jonathan De Halleux. 2015. Code Hunt: Experience
with Coding Contests at Scale. In Proceedings of the 2015 IEEE/ACM International Conference on Software Engineering,
Vol. 2. 398–407. https://doi.org/10.1109/ICSE.2015.172

[7] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind Neelakantan,
Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan,
Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, SamMcCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. 2020. Language Models are Few-Shot Learners. In Proceedings of the 2020 International
Conference on Neural Information Processing Systems. Article 159, 1877-1901 pages. https://doi.org/10.48550/arXiv.2005.
14165

[8] Cristian Cadar, Daniel Dunbar, Dawson R Engler, et al. 2008. KLEE: Unassisted and Automatic Generation of High-
Coverage Tests for Complex Systems Programs. In Proceedings of the 2008 USENIX Symposium on Operating Systems
Design and Implementation, Vol. 8. 209–224.

[9] Pedro Calais and Lissa Franzini. 2023. Test-Driven Development Benefits Beyond Design Quality: Flow State and
Developer Experience. In Proceedings of the 2023 IEEE/ACM International Conference on Software Engineering: New
Ideas and Emerging Results. 106–111. https://doi.org/10.1109/ICSE-NIER58687.2023.00025

[10] Federico Cassano, John Gouwar, Daniel Nguyen, Sydney Nguyen, Luna Phipps-Costin, Donald Pinckney, Ming-
Ho Yee, Yangtian Zi, Carolyn Jane Anderson, Molly Q Feldman, Arjun Guha, Michael Greenberg, and Abhinav
Jangda. 2022. MultiPL-E: A Scalable and Extensible Approach to Benchmarking Neural Code Generation. https:
//doi.org/10.48550/arXiv.2208.08227

[11] Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu, Linyi Yang, Kaijie Zhu, Hao Chen, Xiaoyuan Yi, Cunxiang Wang,
Yidong Wang, et al. 2024. A Survey on Evaluation of Large Language Models. ACM Transactions on Intelligent Systems
and Technology 15, 3 (2024), 1–45. https://doi.org/10.48550/arXiv.2307.03109

[12] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared Kaplan, Harri Edwards,
Yuri Burda, Nicholas Joseph, Greg Brockman, et al. 2021. Evaluating Large Language Models Trained on Code.
https://doi.org/10.48550/arXiv.2107.03374

[13] Allen Cypher, Daniel C. Halbert, David Kurlander, Henry Lieberman, David Maulsby, Brad A. Myers, and Alan
Turransky (Eds.). 1993. Watch What I Do: Programming by Demonstration. MIT Press.

[14] Robin David, Luigi Coniglio, Mariano Ceccato, et al. 2020. QSynth-A Program Synthesis-Based Approach for Binary
Code Deobfuscation. In Proceedings of the 2020 Workshop on Binary Analysis Research. https://doi.org/10.14722/bar.
2020.23009

[15] DeepSeek-AI, Aixin Liu, Bei Feng, Bin Wang, et al. 2024. DeepSeek-V2: A Strong, Economical, and Efficient Mixture-
of-Experts Language Model. https://doi.org/10.48550/arXiv.2405.04434

[16] Xueying Du, Mingwei Liu, Kaixin Wang, Hanlin Wang, Junwei Liu, Yixuan Chen, Jiayi Feng, Chaofeng Sha, Xin Peng,
and Yiling Lou. 2023. ClassEval: A Manually-Crafted Benchmark for Evaluating LLMs on Class-level Code Generation.
https://doi.org/10.48550/arXiv.2308.01861

[17] Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, et al. 2024. The Llama 3 Herd of Models.
https://doi.org/10.48550/arXiv.2407.21783

[18] Yingjie Fu, Bozhou Li, Linyi Li, Wentao Zhang, and Tao Xie. 2025. The InterCode Project. https://sites.google.com/
view/intercodeproj

[19] Davide Fucci, Hakan Erdogmus, Burak Turhan, Markku Oivo, and Natalia Juristo. 2016. A Dissection of the Test-Driven
Development Process: Does It Really Matter to Test-First or to Test-Last? IEEE Transactions on Software Engineering 43,

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA070. Publication date: July 2025.

https://doi.org/10.48550/arXiv.2108.11590
https://doi.org/10.48550/arXiv.2304.06815
https://doi.org/10.48550/arXiv.2108.07732
https://doi.org/10.48550/arXiv.2108.07732
https://doi.org/10.48550/arXiv.1611.01989
https://doi.org/10.1145/2983990.2984020
https://doi.org/10.1109/ICSE.2015.172
https://doi.org/10.48550/arXiv.2005.14165
https://doi.org/10.48550/arXiv.2005.14165
https://doi.org/10.1109/ICSE-NIER58687.2023.00025
https://doi.org/10.48550/arXiv.2208.08227
https://doi.org/10.48550/arXiv.2208.08227
https://doi.org/10.48550/arXiv.2307.03109
https://doi.org/10.48550/arXiv.2107.03374
https://doi.org/10.14722/bar.2020.23009
https://doi.org/10.14722/bar.2020.23009
https://doi.org/10.48550/arXiv.2405.04434
https://doi.org/10.48550/arXiv.2308.01861
https://doi.org/10.48550/arXiv.2407.21783
https://sites.google.com/view/intercodeproj
https://sites.google.com/view/intercodeproj

ISSTA070:22 Yingjie Fu, Bozhou Li, Linyi Li, Wentao Zhang, and Tao Xie

7 (2016), 597–614. https://doi.org/10.1109/TSE.2016.2616877
[20] Patrice Godefroid, Nils Klarlund, and Koushik Sen. 2005. DART: Directed Automated Random Testing. In Proceedings

of the 2005 ACM SIGPLAN Conference on Programming Language Design and Implementation. 213–223. https://doi.org/
10.1145/1064978.1065036

[21] Wenhan Xiong Grattafiori, Alexandre Défossez, Jade Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas
Usunier, Thomas Scialom, Gabriel Synnaeve, et al. 2024. Code Llama: Open Foundation Models for Code. https:
//doi.org/10.48550/arXiv.2308.12950

[22] Sumit Gulwani. 2011. Automating String Processing in Spreadsheets Using Input-Output Examples. In Proceedings
of the 2011 Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages. 317–330. https:
//doi.org/10.1145/1926385.1926423

[23] Sumit Gulwani. 2016. Programming by Examples (and its Applications in Data Wrangling). (2016). https://www.
microsoft.com/en-us/research/publication/programming-examples-applications-data-wrangling/

[24] Sumit Gulwani, José Hernández-Orallo, Emanuel Kitzelmann, Stephen H. Muggleton, Ute Schmid, and Benjamin Zorn.
2015. Inductive Programming Meets the Real World. Commun. ACM 58, 11 (2015), 90–99. https://doi.org/10.1145/
2736282

[25] Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen, Xiao Bi, Yu Wu, Y. K.
Li, Fuli Luo, Yingfei Xiong, Wenfeng Liang, et al. 2024. DeepSeek-Coder: When the Large Language Model Meets
Programming – The Rise of Code Intelligence. https://doi.org/10.48550/arXiv.2401.14196

[26] Hossein Hajipour, Mateusz Malinowski, and Mario Fritz. 2021. IReEn: Reverse-Engineering of Black-Box Functions via
Iterative Neural Program Synthesis. In Proceedings of the 2021 Joint European Conference on Machine Learning and
Knowledge Discovery in Databases. 143–157. https://doi.org/10.48550/arXiv.2006.10720

[27] Yiyang Hao, Ge Li, Yongqiang Liu, Xiaowei Miao, He Zong, Siyuan Jiang, Yang Liu, and He Wei. 2022. AixBench: A
Code Generation Benchmark Dataset. https://doi.org/10.48550/arXiv.2206.13179

[28] Dan Hendrycks, Steven Basart, Saurav Kadavath, Mantas Mazeika, Akul Arora, Ethan Guo, Collin Burns, Samir
Puranik, Horace He, Dawn Song, and Jacob Steinhardt. 2021. Measuring Coding Challenge Competence with APPS.
https://doi.org/10.48550/arXiv.2105.09938

[29] D. Janzen and H. Saiedian. 2005. Test-Driven Development: Concepts, Taxonomy, and Future Direction. Computer 38,
9 (2005), 43–50. https://doi.org/10.1109/MC.2005.314

[30] Juyong Jiang, Fan Wang, Jiasi Shen, Sungju Kim, and Sunghun Kim. 2024. A Survey on Large Language Models for
Code Generation. https://doi.org/10.48550/arXiv.2406.00515

[31] Nan Jiang, Kevin Liu, Thibaud Lutellier, and Lin Tan. 2023. Impact of Code Language Models on Automated Program
Repair. In Proceedings of the 45th International Conference on Software Engineering. 1430–1442. https://doi.org/10.48550/
arXiv.2302.05020

[32] Carlos E. Jimenez, John Yang, AlexanderWettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik Narasimhan. 2024. SWE-
bench: Can Language Models Resolve Real-World GitHub Issues?. In Proceedings of the 2024 International Conference
on Learning Representations. https://doi.org/10.48550/arXiv.2310.06770

[33] Valentin Knappich. 2023. Tests4J benchmark: execution-based evaluation of context-aware language models for test case
generation. Master’s thesis.

[34] Yuhang Lai, Chengxi Li, Yiming Wang, Tianyi Zhang, Ruiqi Zhong, Luke Zettlemoyer, Scott Wen tau Yih, Daniel Fried,
Sida Wang, and Tao Yu. 2023. DS-1000: A Natural and Reliable Benchmark for Data Science Code Generation. In
Proceedings of the 40th International Conference on Machine Learning, Vol. 202. 18319–18345. https://doi.org/10.48550/
arXiv.2211.11501

[35] Vu Le and Sumit Gulwani. 2014. FlashExtract: A Framework for Data Extraction by Examples. In Proceedings of the
2014 ACM SIGPLAN Conference on Programming Language Design and Implementation. 542–553. https://doi.org/10.
1145/2594291.2594333

[36] Jinyang Li, Binyuan Hui, Ge Qu, Jiaxi Yang, Binhua Li, Bowen Li, Bailin Wang, Bowen Qin, Rongyu Cao, Ruiying
Geng, Nan Huo, Xuanhe Zhou, Chenhao Ma, Guoliang Li, Kevin C. C. Chang, Fei Huang, Reynold Cheng, and
Yongbin Li. 2023. Can LLM Already Serve as a Database Interface? A Big Bench for Large-Scale Database Grounded
Text-to-SQLs. In Proceedings of the 2023 Advances in Neural Information Processing Systems, Vol. 36. 42330–42357.
https://doi.org/10.48550/arXiv.2305.03111

[37] Rongao Li, Jie Fu, Bo-Wen Zhang, Tao Huang, Zhihong Sun, Chen Lyu, Guang Liu, Zhi Jin, and Ge Li. 2023. TACO:
Topics in Algorithmic Code generation dataset. https://doi.org/10.48550/arXiv.2312.14852

[38] Wen-Ding Li and Kevin Ellis. 2024. Is Programming by Example Solved by LLMs? https://doi.org/10.48550/arXiv.2406.
08316

[39] Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom Eccles, James Keeling,
Felix Gimeno, Agustin Dal Lago, et al. 2022. Competition-Level Code Generation with Alphacode. Science 378, 6624
(2022), 1092–1097. https://doi.org/10.1126/science.abq1158

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA070. Publication date: July 2025.

https://doi.org/10.1109/TSE.2016.2616877
https://doi.org/10.1145/1064978.1065036
https://doi.org/10.1145/1064978.1065036
https://doi.org/10.48550/arXiv.2308.12950
https://doi.org/10.48550/arXiv.2308.12950
https://doi.org/10.1145/1926385.1926423
https://doi.org/10.1145/1926385.1926423
https://www.microsoft.com/en-us/research/publication/programming-examples-applications-data-wrangling/
https://www.microsoft.com/en-us/research/publication/programming-examples-applications-data-wrangling/
https://doi.org/10.1145/2736282
https://doi.org/10.1145/2736282
https://doi.org/10.48550/arXiv.2401.14196
https://doi.org/10.48550/arXiv.2006.10720
https://doi.org/10.48550/arXiv.2206.13179
https://doi.org/10.48550/arXiv.2105.09938
https://doi.org/10.1109/MC.2005.314
https://doi.org/10.48550/arXiv.2406.00515
https://doi.org/10.48550/arXiv.2302.05020
https://doi.org/10.48550/arXiv.2302.05020
https://doi.org/10.48550/arXiv.2310.06770
https://doi.org/10.48550/arXiv.2211.11501
https://doi.org/10.48550/arXiv.2211.11501
https://doi.org/10.1145/2594291.2594333
https://doi.org/10.1145/2594291.2594333
https://doi.org/10.48550/arXiv.2305.03111
https://doi.org/10.48550/arXiv.2312.14852
https://doi.org/10.48550/arXiv.2406.08316
https://doi.org/10.48550/arXiv.2406.08316
https://doi.org/10.1126/science.abq1158

An Evaluation of Large Language Models on Iterative Example-Based Code Generation ISSTA070:23

[40] Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. 2024. EvalPlus Leaderboard. https://evalplus.
github.io/leaderboard.html

[41] Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. 2024. Is Your Code Generated by ChatGPT Really
Correct? Rigorous Evaluation of Large Language Models for Code Generation. In Proceedings of the 2024 International
Conference on Neural Information Processing Systems. Article 943, 21558 - 21572 pages. https://doi.org/10.48550/arXiv.
2305.01210

[42] Tianyang Liu, Canwen Xu, and Julian McAuley. 2023. RepoBench: Benchmarking Repository-Level Code Auto-
Completion Systems. https://doi.org/10.48550/arXiv.2306.03091

[43] Anton Lozhkov, Raymond Li, Loubna Ben Allal, Federico Cassano, Joel Lamy-Poirier, Nouamane Tazi, Ao Tang,
Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei, et al. 2024. StarCoder 2 and The Stack v2: The Next Generation. https:
//doi.org/10.48550/arXiv.2402.19173

[44] Anders Miltner, Sumit Gulwani, Vu Le, Alan Leung, Arjun Radhakrishna, Gustavo Soares, Ashish Tiwari, and Abhishek
Udupa. 2019. On the Fly Synthesis of Edit Suggestions. Proceedings of the 2019 ACM on Programming Languages 3
(2019), 1 – 29. https://doi.org/10.1145/3360569

[45] Niklas Muennighoff, Qian Liu, Armel Zebaze, Qinkai Zheng, Binyuan Hui, Terry Yue Zhuo, Swayam Singh, Xiangru
Tang, Leandro von Werra, and Shayne Longpre. 2024. OctoPack: Instruction Tuning Code Large Language Models.
https://doi.org/10.48550/arXiv.2308.07124

[46] Chandrakana Nandi, Max Willsey, Adam Anderson, James R Wilcox, Eva Darulova, Dan Grossman, and Zachary
Tatlock. 2020. Synthesizing Structured CAD Models with Equality Saturation and Inverse Transformations. In
Proceedings of the 2020 ACM SIGPLAN Conference on Programming Language Design and Implementation. 31–44.
https://doi.org/10.1145/3385412.3386012

[47] Ansong Ni, Srini Iyer, Dragomir Radev, Ves Stoyanov, Wen-tau Yih, Sida I. Wang, and Xi Victoria Lin. 2023. LEVER:
Learning to Verify Language-to-Code Generation with Execution. In Proceedings of the 2023 International Conference
on Machine Learning. 26106–26128. https://doi.org/10.48550/arXiv.2302.08468

[48] Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese, and Caiming Xiong.
2023. CodeGen: An Open Large Language Model for Code with Multi-Turn Program Synthesis. https://doi.org/10.
48550/arXiv.2203.13474

[49] OpenAI. 2024. GPT-4o-mini. https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/ Large
Language Model by OpenAI.

[50] OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, et al. 2024. GPT-4 Technical Report.
https://doi.org/10.48550/arXiv.2303.08774

[51] Rangeet Pan, Vu Le, Nachiappan Nagappan, Sumit Gulwani, Shuvendu Lahiri, and Mike Kaufman. 2021. Can Program
Synthesis be Used to Learn Merge Conflict Resolutions? An Empirical Analysis. In Proceedings of the 2021 International
Conference on Software Engineering. 785–796. https://doi.org/10.48550/arXiv.2103.02004

[52] Hafiz Arslan Ramzan, Sadia Ramzan, and Tehmina Kalsum. 2024. Test-Driven Development (TDD) in Small Software
Development Teams: Advantages and Challenges. In Proceedings of the 2024 International Conference on Advancements
in Computational Sciences. 1–5. https://doi.org/10.1109/ICACS60934.2024.10473291

[53] Mohammad Raza and Sumit Gulwani. 2017. Automated Data Extraction Using Predictive Program Synthesis. In
Proceedings of the 2017 AAAI Conference on Artificial Intelligence. 882–890. https://doi.org/10.1609/aaai.v31i1.10668

[54] Mark Santolucito, Drew Goldman, Allyson Weseley, and Ruzica Piskac. 2018. Programming by Example: Efficient, but
Not “Helpful”’. In Proceedings of the 2018 Workshop on Evaluation and Usability of Programming Languages and Tools.
3:1–3:10. https://doi.org/10.4230/OASIcs.PLATEAU.2018.3

[55] John Schulman, Barret Zoph, Christina Kim, Jacob Menick Jacob Hilton, Jiayi Weng, Juan Felipe Ceron Uribe, Liam
Fedus, Luke Metz, Michael Pokorny, et al. 2022. ChatGPT: Optimizing Language Models for Dialogue. https://chatgpt.
r4wand.eu.org/

[56] Koushik Sen, Darko Marinov, and Gul Agha. 2005. CUTE: A Concolic Unit Testing Engine for C. ACM SIGSOFT
Software Engineering Notes 30, 5 (2005), 263–272. https://doi.org/10.1145/1095430.1081750

[57] CodeGemma Team, Heri Zhao, Jeffrey Hui, Joshua Howland, Nam Nguyen, Siqi Zuo, Andrea Hu, Christopher A
Choquette-Choo, Jingyue Shen, Joe Kelley, et al. 2024. CodeGemma: Open Code Models Based on Gemma. https:
//doi.org/10.48550/arXiv.2406.11409

[58] Gemma Team, Thomas Mesnard, Cassidy Hardin, Robert Dadashi, Surya Bhupatiraju, Shreya Pathak, Laurent Sifre,
Morgane Rivière, Mihir Sanjay Kale, Juliette Love, et al. 2024. Gemma: Open Models Based on Gemini Research and
Technology. https://doi.org/10.48550/arXiv.2403.08295

[59] Gemma Team, Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, et al. 2024. Gemma 2: Improving Open Language
Models at a Practical Size. https://doi.org/10.48550/arXiv.2408.00118

[60] Nikolai Tillmann, Judith Bishop, Nigel Horspool, Daniel Perelman, and Tao Xie. 2014. Code Hunt: Searching for
Secret Code for Fun. In Proceedings of the 2014 International Workshop on Search-Based Software Testing. 23–26.

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA070. Publication date: July 2025.

https://evalplus.github.io/leaderboard.html
https://evalplus.github.io/leaderboard.html
https://doi.org/10.48550/arXiv.2305.01210
https://doi.org/10.48550/arXiv.2305.01210
https://doi.org/10.48550/arXiv.2306.03091
https://doi.org/10.48550/arXiv.2402.19173
https://doi.org/10.48550/arXiv.2402.19173
https://doi.org/10.1145/3360569
https://doi.org/10.48550/arXiv.2308.07124
https://doi.org/10.1145/3385412.3386012
https://doi.org/10.48550/arXiv.2302.08468
https://doi.org/10.48550/arXiv.2203.13474
https://doi.org/10.48550/arXiv.2203.13474
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/
https://doi.org/10.48550/arXiv.2303.08774
https://doi.org/10.48550/arXiv.2103.02004
https://doi.org/10.1109/ICACS60934.2024.10473291
https://doi.org/10.1609/aaai.v31i1.10668
https://doi.org/10.4230/OASIcs.PLATEAU.2018.3
https://chatgpt.r4wand.eu.org/
https://chatgpt.r4wand.eu.org/
https://doi.org/10.1145/1095430.1081750
https://doi.org/10.48550/arXiv.2406.11409
https://doi.org/10.48550/arXiv.2406.11409
https://doi.org/10.48550/arXiv.2403.08295
https://doi.org/10.48550/arXiv.2408.00118

ISSTA070:24 Yingjie Fu, Bozhou Li, Linyi Li, Wentao Zhang, and Tao Xie

https://doi.org/10.1145/2593833.2593838
[61] N. Tillmann and J. de Halleux. 2008. Pex-White Box Test Generation for .NET. In Proceedings of the 2008 International

Conference on Tests and Proofs. 134–153. https://doi.org/10.1007/978-3-540-79124-9_10
[62] Nikolai Tillmann, Jonathan de Halleux, and Tao Xie. 2014. Transferring an Automated Test Generation Tool to Practice:

From Pex to Fakes and Code Digger. In Proceedings of the 2014 IEEE/ACM International Conference on Automated
Software Engineering. 385–396. https://doi.org/10.1145/2642937.2642941

[63] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov,
Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. 2023. Llama 2: Open Foundation and Fine-Tuned Chat Models.
https://doi.org/10.48550/arXiv.2307.09288

[64] Michele Tufano, Shao Kun Deng, Neel Sundaresan, and Alexey Svyatkovskiy. 2022. Methods2Test: A Dataset of Focal
Methods Mapped to Test Cases. In Proceedings of the 2022 International Conference on Mining Software Repositories.
299–303. https://doi.org/10.1145/3524842.3528009

[65] Chenglong Wang, Yu Feng, Rastislav Bodík, Alvin Cheung, and Işıl Dillig. 2019. Visualization by Example. Proceedings
of the 2019 ACM on Programming Languages 4 (2019), 1 – 28. https://doi.org/10.48550/arXiv.1911.09668

[66] Jing Wei, Sungdong Kim, Hyunhoon Jung, and Young-Ho Kim. 2024. Leveraging Large Language Models to Power
Chatbots for Collecting User Self-Reported Data. In Proceedings of the 2024 ACM on Human-Computer Interaction. 1–35.
https://doi.org/10.1145/3637364

[67] Yeming Wen, Pengcheng Yin, Kensen Shi, Henryk Michalewski, Swarat Chaudhuri, and Alex Polozov. 2024. Grounding
Data Science Code Generation with Input-Output Specifications. https://doi.org/10.48550/arXiv.2402.08073

[68] Tao Xie, Nikolai Tillmann, Jonathan de Halleux, and Wolfram Schulte. 2009. Fitness-Guided Path Exploration in
Dynamic Symbolic Execution. In Proceedings of the 2009 Annual IEEE/IFIP International Conference on Dependable
Systems and Networks. 359–368. https://doi.org/10.1109/DSN.2009.5270315

[69] Yongho Yoon, Woosuk Lee, and Kwangkeun Yi. 2023. Inductive Program Synthesis via Iterative Forward-Backward
Abstract Interpretation. In Proceedings of the 2023 ACM on Programming Languages, Vol. 7. 1657 – 1681. https:
//doi.org/10.1145/3591288

[70] Hao Yu, Bo Shen, Dezhi Ran, Jiaxin Zhang, Qi Zhang, Yuchi Ma, Guangtai Liang, Ying Li, Qianxiang Wang, and Tao
Xie. 2024. CoderEval: A Benchmark of Pragmatic Code Generation with Generative Pre-trained Models. In Proceedings
of the 2024 IEEE/ACM International Conference on Software Engineering. 1–12. https://doi.org/10.1145/3597503.3623322

[71] Fengji Zhang, Bei Chen, Yue Zhang, Jacky Keung, Jin Liu, Daoguang Zan, Yi Mao, Jian-Guang Lou, and Weizhu Chen.
2023. RepoCoder: Repository-Level Code Completion Through Iterative Retrieval and Generation. In Proceedings of
the 2023 Conference on Empirical Methods in Natural Language Processing. 2471–2484. https://doi.org/10.48550/arXiv.
2303.12570

[72] Zhuosheng Zhang, Aston Zhang, Mu Li, and Alex Smola. 2022. Automatic Chain of Thought Prompting in Large
Language Models. https://doi.org/10.48550/arXiv.2210.03493

[73] Ming Zhu, Aneesh Jain, Karthik Suresh, Roshan Ravindran, Sindhu Tipirneni, and Chandan K. Reddy. 2022. XLCoST:
A Benchmark Dataset for Cross-Lingual Code Intelligence. https://doi.org/10.48550/arXiv.2206.08474

Received 2024-10-31; accepted 2025-03-31

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA070. Publication date: July 2025.

https://doi.org/10.1145/2593833.2593838
https://doi.org/10.1007/978-3-540-79124-9_10
https://doi.org/10.1145/2642937.2642941
https://doi.org/10.48550/arXiv.2307.09288
https://doi.org/10.1145/3524842.3528009
https://doi.org/10.48550/arXiv.1911.09668
https://doi.org/10.1145/3637364
https://doi.org/10.48550/arXiv.2402.08073
https://doi.org/10.1109/DSN.2009.5270315
https://doi.org/10.1145/3591288
https://doi.org/10.1145/3591288
https://doi.org/10.1145/3597503.3623322
https://doi.org/10.48550/arXiv.2303.12570
https://doi.org/10.48550/arXiv.2303.12570
https://doi.org/10.48550/arXiv.2210.03493
https://doi.org/10.48550/arXiv.2206.08474

	Abstract
	1 Introduction
	2 Background
	2.1 Example-based Code Generation
	2.2 LLMs on Code Generation

	3 Iterative Evaluation Framework
	3.1 First-Round Interaction
	3.2 Iterative Interaction

	4 InterCode Benchmark
	4.1 Prgramming-Task Collection
	4.2 Construction

	5 Evaluation Setting
	5.1 Research Questions
	5.2 Metrics
	5.3 Evaluated LLMs and Model Settings
	5.4 Prompt Design

	6 Results and Analysis
	7 Recommendation
	7.1 Directions for Improving LLMs
	7.2 Strategies to Better Utilize LLMs

	8 Related Work
	9 Threats to Validity
	10 Conclusion
	11 Data Availability
	12 Acknowledgment
	References

