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Neural Image Classifiers are Not Robust

Robustness issues are prevalent and dangerous
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Ian J. Goodfellow, Jonathon Shlens, Christian Szegedy.
Explaining and Harnessing Adversarial Examples. ICLR 2015



Neat and “Toy”Problem - ℓ𝑝 Robustness

Training the classifier 𝑓:𝒳 → 𝒴 to

maximize Pr
𝒙,𝑦𝑡𝑟𝑢𝑒 ∼𝒫𝑡𝑒𝑠𝑡

[ ∀𝒙′. 𝒙′ − 𝒙 𝑝 ≤ 𝜖 → 𝑓 𝒙′ = 𝑦𝑡𝑟𝑢𝑒 ]

• ⋅ 𝑝 norm: predefined, common choices are ⋅ ∞, ⋅ 2

• 𝜖: small perturbation budget
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• A “necessary” condition for worst-case robustness
• Spurs remarkable research progress & powerful methods



Revisiting
Certified Robustness Approaches
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Relaxation

Regularization

Robust Neural Net

Architectures
Robust Inferences

• Convex relaxations

• Branch-and-bound

• Lipschitz-regularization

• …

• Orthogonal layers

• Gradient-norm-

preserving activations

• ℓ∞-neurons

• …

• Randomized smoothing

• Diffusion purifications

• …

e.g. [Wong and Kolter, 2018] e.g. [Zhang et al, 2021] e.g. [Cohen et al, 2019]



Relaxation Regularization

• Input region: {𝒙′: 𝒙′ − 𝒙 𝑝 ≤ 𝜖}

• Propagate and relax
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[Wong and Kolter, ICML 2018]

• Train to optimize worst case in convex bound
❖Or optimize Lipschitz (i.e., sensitivity) bound

❖Or tighten convex bound verification at test time



Relaxation Regularization

• Input region: {𝒙′: 𝒙′ − 𝒙 𝑝 ≤ 𝜖}

• Propagate and relax
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Model Size

Compute

Needed

Bound

Tightness

* Qualitative illustration

❖ Strongly constrained by compute
❖ Favorable for <1M models

• Train to optimize worst case in convex bound
❖Or optimize Lipschitz (i.e., sensitivity) bound

❖Or tighten convex bound verification at test time



Robust Neural Net Architectures

• Smoothness implies ℓ𝑝 robustness against test-time perturbations

• Smoothness: small Lipschitz constant here
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Figure from

[Li, Xu, Taylor, Studer, and Goldstein, NIPS 2018]



Robust Neural Net Architectures

Achieving small Lipschitz constant:

• Orthogonal weight matrix: 𝑾𝑇𝑾 = 𝐼

• Lipschitz-bounded Layers:

• Householder activation: 𝒙 ↦ ቊ
𝒙 𝒗𝑇𝒙 > 0
𝐼 − 2𝒗𝒗𝑇 𝑥 𝒗𝑇𝒙 ≤ 0

• L2 self-attention: 𝑃𝑖𝑗 ∝ exp(−
𝒙𝑖
𝑇𝑾𝑄𝐾−𝒙𝑗

𝑇𝑾𝑄𝐾
2

2

𝐷/𝐻
)

• ℓ∞-dist neurons: 𝒙 ↦ 𝒙 −𝒘 ∞ + 𝑏

…
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e.g. [Huang et al, CVPR 2020]

e.g. [Singla et al,

ICLR 2022]

[Kim, Papamakarios, and Mnih, ICML 2021]

[Zhang et al, ICML 2021]

Blue denotes to learnable weights



Robust Inferences

Randomized Smoothing:

Aggregate votes from Gaussian-noised inputs
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+

Gaussian

noise

… …

…Cat Dog

80%±1%

15%±1% cat

[Cohen, Rosenfeld, and Kolter, ICML 2019]



Robust Inferences
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Distribution center shift (𝑥 → 𝑥′) cannot change probability much

• Rank doesn’t change → prediction doesn’t change

➢ Compute robustness guarantees based on probability gap

…Cat Dog

55%±1%

40%±1% cat

…Cat Dog

80%±1%

15%±1%

Cat

Dog

Prediction for noised inputs:

• Past: Train classifiers on noised inputs

• Recent: Denoise with diffusion models then predict



Comparison
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Relaxation

Regularization

Robust Neural Net

Architectures
Robust Inferences

Model

Training

Inference

Standard Standard
Smooth

Architectures

Optimize

Worse-case

Bounds

Standard Augmentation /

Denoising

Standard Standard
Aggregation

through Voting



Certified ℓ𝑝 Robustness:
Strong and Generalizable

• Strong:
• Almost solved on MNIST (>93% certified accuracy under ℓ∞ 0.3 perturb.)

• Good on CIFAR-10 (>60% certified accuracy under ℓ∞ 2/255 perturb.)

• Non-trivial on ImageNet (>35% certified accuracy under ℓ2 2.0 perturb.)

• Generalizable:
• Same methodology generalizable for other trustworthiness threats
• Examples: Robustness against

• Semantic transformations

• Patch attacks

• Synonym changes

• Adversarial prompts

14

• Training data poisoning

• Distribution shifts

• Observation perturbations in RL

• …



More on Certified Robustness
sokcertifiedrobustness.github.io
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TAXONOMY SUMMARY DISCUSSION BENCHMARK

• Characteristics

• Strengths

• Limitations

• Connections

• Generalization
• …

• Current Research

• Theoretical Barriers

• Main Challenges

• Future Directions

• …

VeriGauge

Open-source platform 

for 20+ approaches

[Li, Xie, and Li, IEEE Security & Privacy 2023]

https://sokcertifiedrobustness.github.io/
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LLM Trustworthiness is Important

Not only for general social good in existing LLM applications

But also (maybe more importantly) for human controllability when
AGI or even ASI comes

➢Trustworthiness is attracting broader interests in the LLM era
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What makes LLM trustworthiness challenging?
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• Large model size

• Discrete & variable-length input & output

• Various perturbation types

• Diverse undesirable behaviors

• More stealthy defects

• Questions on research value

• …

More discussion:

Rando, Javier, Jie Zhang, Nicholas Carlini, and Florian Tramèr. "Adversarial ML 

Problems Are Getting Harder to Solve and to Evaluate." arXiv:2502.02260.



Technical FrontIdeological Front

What makes LLM trustworthiness challenging?
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• Large model size

• Discrete & variable-length

input & output

• Various perturbation types

• Diverse undesirable behaviors

• More stealthy defects

• Questions on research value

…

…

* Division not strict



Important Ideological Research Questions

Diverse undesirable behaviors call for:

➢Define & agree on a “simplified”
problem/notion to solve

• Similar to ℓ𝑝 robustness

Requirements:

• Can motivate generalizable methods

• Have clear physical meaning

• Non-trivial

• Focus on model rather than system
solutions 20

Questions on research value call for:

➢Demonstrate practical safety &
security challenges

• Similar to physical attacks on image models

Rich research on:

Unaligned models practically unsafe/unsecure

Need more research on:

‘Simple trustworthiness problem’ that brings
broadly practically safe/secure models



Hunting for Technical Solutions from Human

• We achieve (probably better) trustworthiness

• Compared to certified robustness approaches, our humans are:

21

Model

Training

Inference

More Constrained

Simple

Think &
Aggregation

• We don’t optimize “fully-connected” large matrices
• More structured; hyperactivity is usually abnormal

• We don’t optimize some complex bounds
• We recite, reason, and drive by goals

• When not sure, we pause to read & think more



Recall
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Future: Robust Architectures and Inferences
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Define “ℓ𝑝-Robustness” in Language Domain

• Proposed notion:
• Detailed, explicit, and robust base prompts

• Arbitrarily add or remove or modify ≤ 𝜖% tokens

• Model’s response attitude does not change

* Ongoing and necessary: test notion generalizability
• Positive correlation with trustworthiness in other aspects

• Broader – improves generalization and learning efficiency
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Smooth Language Models

Key Methodology: Combine Robust Architectures and Robust Inferences

➢Multi-token thinking as a form of nature aggregation

→ Robustify the prediction

➢Certified robustness requires:
➢Bounding worse-case temporal dependence

→ Attention capping, dis-entangling, and reweighting

➢Bounding sensitivity

 → 1-Lipschitz self-attention, L2 self-attention

➢ Independent ensembles
 → More independent MoEs

……
26
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Stay tuned to our research @ sfu-
tai.github.io
Thanks! Any questions are welcome

https://openreview.net/forum?id=hzG72qB0XQ
https://sfu-tai.github.io/
https://sfu-tai.github.io/
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