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Adversarial Robustness – A Lasting Threat

• Deep neural networks (DNNs) can be easily fooled by
adversarial examples

• Tiny crafted perturbations can make DNNs give wrong predictions

Cat DogAdversarial
Distortion Carefully crafted 
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Severe Safety Threats

Possibly

Fatal Accident

Example: autonomous driving
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Arm Race

Defenses bypassed by follow-up attacks
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Ending Arm Race? Certified Robustness!

• Prove adversarial example doesn’t exist

Guarantee of Safety
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Ending Arm Race? Certified Robustness!

• Prove adversarial example doesn’t exist

Guarantee of Safety
First Systematization of Knowledge on
Certified Robustness for Deep Neural Networks!

6



Content

TAXONOMY SUMMARY DISCUSSION BENCHMARK

• Characteristics

• Strengths

• Limitations

• Connections

• Generalization
• …

• Current Research

• Theoretical Barriers

• Main Challenges

• Future Directions

• …

VeriGauge

Open-source platform 

for 20+ approaches
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Threat Model

• Various types of adversarial examples exist

• Focus on (p-norm constrained) perturbations
• Widely studied

• Techniques generalizable to other types of adversarial
examples

Semantic

Transformations

Tiny Perturbations
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Robustness against
(p-Norm Constrained) Perturbations

Given a DL model , finite test dataset

Check:

( norm)

Original

Input

Adversarial

Input

9



Formal Definition of Certification

For given system and data instance with

true label , compute larger , such that

Larger certified radius

= Tighter certification 

= Better certified robustness
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Taxonomy of Verification Method

SOTA determinisitc certified 

robustness for general DNNs

SOTA probabilistic certified robustness

Only method supporting large models
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DNN Architecture

• Input layer: vector 𝑥0

• Weights: 𝑊0, 𝑏0 , 𝑊1, 𝑏1 , … (𝑊𝐿−1, 𝑏𝐿−1).

• Activation function: 
• ReLU 𝑥 = max{𝑥, 0}

• Computation:
• 𝑥1 = ReLU(𝑊0𝑥0 + 𝑏0),

• 𝑥2 = ReLU(𝑊1𝑥1 + 𝑏1),

• …

• 𝑥𝐿 = 𝑊𝐿−1𝑥𝐿−1 + 𝑏𝐿−1

• Output: 𝑥𝐿 - confidence score for each class

https://www.educba.com/deep-learning-technique/
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Linear Relaxation of ReLU

Different Linear Relaxations for ReLU 𝑥 = max {𝑥, 0}

Weng, Lily, et al. “Towards fast computation of certified robustness for relu networks.” ICML 2018

Wong, Eric, and Zico Kolter. “Provable defenses against adversarial examples via the convex outer adversarial polytope.” ICML 2018

Singh, Gagandeep, et al. “Fast and Effective Robustness Certification.” NIPS 2018
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Linear Relaxation Induces Linear Inequality

Propagate linear inequalities that bound possible output region

Layer 1 Layer 2 Layer 3
Output 

Layer

Linear Bound 

Propagation
[𝑥, 𝑥] [𝐿1𝑥 + 𝑙1, 

𝑈1𝑥 + 𝑢1]
[𝐿2𝑥 + 𝑙2, 
𝑈2𝑥 + 𝑢2]

[𝐿3𝑥 + 𝑙3, 
𝑈3𝑥 + 𝑢3]

[𝐿4𝑥 + 𝑙4, 
𝑈4𝑥 + 𝑢4]
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Combat Over-Relaxation with Branch-and-Bound

Conditioned on two branches: 𝑥 ≤ 0 and 𝑥 > 0, 

 each ReLU neuron is reduced to linear constraints: 𝑦 = 0 or 𝑦 = 𝑥

Select some neurons to condition on, and solve two subproblems

• If x<=0, y=0 (linearized subproblem)

• If x> 0, y=x (linearized subproblem) 

• Relax other neurons by linear relaxation and bound propagation

• Most scalable verification method so far
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Randomized Smoothing

1. Train a model (“base classifier”) under some known noise 

2. Smooth into a new classifier (“smoothed classifier”), 
such that

= the most probable prediction by under noised 
corruptions of

In deployment, use smoothed classifier
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Illustration of Randomized Smoothing

+

Gaussian

noise

… …

…Cat Dog

80%±1%

15%±1% cat
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Randomized Smoothing
Enables Certified Robustness

Shift center of the distribution cannot change probability much
• If order doesn’t change, then consistent prediction guaranteed

…Cat Dog

55%±1%

40%±1% cat

…Cat Dog

80%±1%

15%±1%

Cat

Dog
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Closed-form Robustness Guarantee

• ’s probability of the top class (cat)

• ’s probability of the runner-up class (dog)

…Cat Dog

80%±1%

15%±1%

certifiably returns top class within an 

ball around    of radius

•    : variance of Gaussian smoothing noise

• Φ−1: the inverse standard Gaussian CDF

Jeremy M Cohen, Elan Rosenfeld, J. Zico Kolter. Certified Adversarial Robustness via 
Randomized Smoothing. ICML 2019
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Certification Induces Robust Training

• Training DNN in specific ways can improve certified robustness

For linear relaxation + branch-and-bound:

training to reduce upper bound of loss function computed from

over-approximation

For randomized smoothing:

training to predict correctly for noised inputs
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How Far Are We on Real-World Datasets?
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Progress of Robustness on Typical Datasets and Settings

Certified, MNIST, Linf, ε=0.1 Certified, MNIST, Linf, ε=0.3 Empirical, MNIST, Linf, ε=0.3

Certified, CIFAR-10, Linf, ε=2/255 Certified, CIFAR-10, Linf, ε=8/255 Empirical, CIFAR-10, Linf, ε=8/255

Certified, ImageNet, L2, ε=2.0
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On MNIST

https://github.com/MadryLab/mnist_challenge

ℓ∞ norm, 𝑟 =  0.3

• SOTA Certified Robust Accuracy: 94.02%
• [CVPR 2021] Towards Evaluating and Training Verifiably Robust Neural 

Networks

• SOTA Empirical Robust Accuracy (against existing attacks): 96.34%
• https://github.com/MadryLab/mnist_challenge

• Uncovering the Limits of Adversarial Training against Norm-Bounded 
Adversarial Examples

• ArXiv: 2010.03593

➢Not much difference
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On CIFAR-10

ℓ∞ norm, 𝑟 = 8/255:

• SOTA Certified Robust Accuracy: 40.39%
• [NeurIPS 2022] Rethinking Lipschitz Neural Networks and Certified 

Robustness: A Boolean Function Perspective

• SOTA Empirical Robust Accuracy (against existing attacks): 71.29%
• [ICML 2022] Diffusion Models for Adversarial Purification

➢Still a gap
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On ImageNet

ℓ2 norm, 𝑟 = 2.0

• SOTA Certified Robust Accuracy: 30.4%
• Our paper at [ICLR 2022] On the Certified Robustness for Ensemble Models 

and Beyond

• SOTA empirical robustness accuracy: 43.18%

• Against ℓ∞ norm, 𝑟 =
4

255

• [ICML 2022] Diffusion Models for Adversarial Purification

• Hard to achieve robustness
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Key Messages

• Since 2017, many methods proposed to provide &
improve DNN certified robustness

• Linear relaxation

• Branch-and-bound

• Randomized smoothing

• …

• Remarkable certified robustness achieved on
small datasets, but still challenging on large ones

• Good on MNIST

• To be improved on CIFAR-10 and ImageNet

• Certification for p-norm bounded
adversary generalizable for
other threat models

• Semantic adversary

• Patch adversary

• Word substitution adversary

• Control state perturbation

• Poisoning attack

• …
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sokcertifiedrobustness.github.io
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VeriGauge

Open-source platform 

for 20+ approaches

https://sokcertifiedrobustness.github.io/
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